分层结构的生活例子_Play with R 第19期:分层线性模型/多水平

本文深入探讨了分层数据的性质,解释了分层线性模型的优势,如允许类内相关性和处理数据丢失。通过实际例子展示了随机截距、随机斜率模型以及两者的组合,强调了在多水平模型中参数随机化的重要性。此外,讨论了R中实现多层模型的步骤,包括模型选择、协方差结构的评估以及数据处理技巧。
摘要由CSDN通过智能技术生成

_

Play with R 第19期:

Multilevel linear models

_

19.1本章将告诉我们什么?(略)

19.2分层数据

19.2.1类内相关

19.2.2分层模型的好处

19.3分层线性模型的理论

19.3.1例子

19.3.2固定系数和随机系数

19.3.2.1随机截距模型

19.3.2.2随机斜率模型

19.3.2.3随机斜率和随机截距模型

19.4多水平模型

19.4.1 评估与比较多水平模型的匹配

19.4.2 协方差结构的类型

19.5. 一些实际问题

19.5.1. 理论假设

19.5.2. 样本量和统计功效

19.5.3. 集中变量 (Centring variables)

19.6.多层模型在R中的应用步骤(以书上的例子为例)

19.7 增长模型

19.7.1 增长模型(指数)

19.7.2 一个例子(略)

19.7.3 重构数据

19.7.4 设置基本模型

19.7.5 添加时间作为固定影响

19.7.6 介绍自由截距项

19.7.7构造协方差结构

19.7.8 模型比较

19.7.9 加入高指数项

19.8 如何报告多水平模型

19.1本章将告诉我们什么?

没有实质性的内容,只是讲作者为什么要加这一章,这一章对他来说也是较新的内容,尽管如此,开始学习也不晚。

19.2分层数据

在现实生活中,数据往往是分层的,如书中图19.2所示是一个最简单的分层模式,考察了一个学校中学生的表现,那么学生是第一层级,来源的班级是第二层级。当然,还有复杂的模式,如图19.3所示,包含了三个层级:学生、班级、学校。像上述数据就称为分层数据。将那些并非主要考察的变量称为背景因素。

4851dfb2c5e95b57309b0101a11c9912.png

edf381f3f583d5e4f15caf632cf99354.png

19.2.1类内相关

为什么分层数据是重要的呢?因为这意味着数据残差将相关。例如,我们假定抽取的学生之间的表现没有关联,但是如果他们恰巧来自同一班级,并且该班级受老师的影响较大,那么学生之间就具有了相关性。那么,在进行ANOVA时,独立性的缺失会影响统计结果。

19.2.2分层模型的好处

1.抛开回归斜率同质性假设。

如果我们要将那些非关注的变量放入协变量进行协方差分析,我们需要满足协变量与结果之间的关系在组成我们的预测变量的不同组中是相同的。但是,这种情况并不总是会发生。而分层模型不用考虑这一点。

2.对独立性假设说再见。

当使用独立方差分析时,我们必须假设数据的不同情况是独立的然而很可能事实并非如此。此外,多元回归依赖于独立的观察。但是,在某些情况下,您可能想多次测量某人(即随着时间的推移)。那么,分层模型是专门设计用来允许您对案例之间的这些关系建模的。

3.数据丢失时请大笑。

数据丢失或设计不平衡时,回归,方差分析,ANCOVA和我们介绍的其他大多数测试都会产生奇怪的结果。分层模型不需要完整的数据集,因此,如果某个时间点上的数据丢失,则无需插补,也无需删除整个案例。相反,可以使用可用数据成功估计参数,这为处理丢失的数据提供了一个相对简单的解决方案。需要强调的是,没有任何统计方法可以克服丢失的数据。应使用良好的方法,设计和研究执行力,以尽量减少缺失值,并应始终探索缺失值的原因。只是,当使用传统的统计方法进行重复测量数据时,通常需要其他方法来解决丢失的数据,这可能会带来问题,在这种情况下分层模型是更好的选择。

19.3分层线性模型的理论

两个要点:什么是多层线性模型;模型中的主要概念

如果你学过13.14章,那你已经接触过多层线性模型了,重复测量设计就是一个两层的模型(分数是第一层,嵌套在作为第二层的被试里)

19.3.1例子

用例子来具体阐述模型中的概念:整容手术对人们生活质量的影响。

数据:(Cosmetic Surgery.dat)

变量:术后生活质量(结果变量);术前生活质量(调试变量);手术与否(用于分组,控制组0还没做过整容手术和实验组1做了整容手术);手术与否文本(分组更详细的说明);手术诊所(10个);年龄;BDI(贝克抑郁量表,);手术原因(1.外貌改变2躯体不适原因);手术原因文本(定义不同的组别);性别

分层模型:

水平1——不同诊所的整容者。

水平2——不同的整容诊所。

分层依据:由同一个外科医生操刀做手术的整容者之间显然不是相互独立的。比起在不同诊所手术的整容者,同一诊所的整容者有更多相似的特征。

多层模型图示19.5

43716f0fc86cdb9687b88ee875e82af9.png

19.3.2固定系数和随机系数

在本书的所有回归分析中,我们假设所有回归参数都是固定参数。我们经常见到的线性模型是用两个参数来表示的:截距b0 和斜率b1 :(Y为因变量,X为自变量,ε为误差,都随函数i变化,i代表不同的被试,即水平1不同的变量)

当我们分析一个这样的回归,我们假设b是固定的,根据数据可以计算出来。基于这个假设,我们默认这个模型适用于全部样本,因此我们可以根据同样的截距和斜率来算出样本中的每个数据。

然而,我们也可以将这些参数设置为随机参数,把他们假设为可以变化的值。

我们以11章的例子(研究人的性欲与其伴侣的性欲(图中以虚线表示)的关系,组别有安慰剂组,低剂量组和高剂量组),演示固定和随机参数搭配,图示19.6:

d72d3b9ef7c97a3461506a5c880f379d.png

19.3.2.1随机截距模型

最简单的将随机参数引进模型的方式是假设在不同组中的截距是不固定的(随机截距)。在研究性欲的例子中,即假设在不同组别(安慰剂组,低剂量组,高剂量组)的被试的与伴侣的性欲关系是相同的情况下,他们的模型是在不同的起点的(即截距不同)见图19.6的第一个图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值