石子合并(四边形不等式优化dp) POJ1160

该来的总是要来的————————

 

经典问题,石子合并。

  对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]}

 

From 黑书

凸四边形不等式:w[a][c]+w[b][d]<=w[b][c]+w[a][d](a<b<c<d)

区间包含关系单调: w[b][c]<=w[a][d](a<b<c<d)

定理1:  如果w同时满足四边形不等式和决策单调性 ,则f也满足四边形不等式

定理2:  若f满足四边形不等式,则决策s满足 s[i][j-1]<=s[i][j]<=s[i+1][j]

定理3: w为凸当且仅当w[i][j]+w[i+1][j+1]<=w[i+1][j]+w[i][j+1]   

 

简要证明:

若w[a][c]+w[b][d]<=w[b][c]+w[a][d],归纳证明f[a][c]+f[b][d]<=f[b][c]+f[a][d]

  设f[a][d]最优决策是在s取到,f[b][c]最优决策在t取到,设s<t,反之同理

  可知a<s<t<c<d

    f[a][c]+f[b][d]<=f[a][s]+f[s+1][c]+w[a][c] + f[b][t]+f[t+1][d]+w[b][d]

            =f[a][s]+f[s+1][c]+w[a][d] + f[b][t]+f[t+1][d]+w[b][c]

           <=f[a][s]+w[a][d]+f[s+1][d] + f[b][t]+w[b][c]+f[t+1][c]         归纳得到 sc+td<sd+tc  起始条件即定理3

           =f[a][d]+f[b][c]

得证.

若f[a][c]+f[b][d]<=f[b][c]+f[a][d],则s[i][j-1]<=s[i][j]<=s[i+1][j]

  仅证s[i][j-1]<=s[i][j],右边同理

  记f_k[i][j]=f[i][k]+f[k+1][j]+w[i][j]

  记s点为[i,j]最优点,t点为[i,j+1]最优点,

  则只需证明 在[i,j+1]决策时, 取s点能够比取在k∈[i,s-1]的点更优即可

    即证明 f_s[i,j+1]<=f_k[i,j+1]

  又因为f_s[i,j]<=f_k[i,j]

     只需证明 0 <= f_k[i,j] - f_s[i,j] <= f_k[i,j+1] - f_s[i,j+1]

      可发现右边即 f_k[i,j] + f_s[i,j+1] <= f_k[i,j+1] + f_s[i,j]  

      展开后即: f[k][j] + f[s][j+1] <= f[k][j+1] + f[s][j]

      正是 k<s<j<j+1 的四边形不等式

得证.

 

一般利用定理3证明凸函数,然后利用定理2的结论 s[i][j-1]<=s[i][j]<=s[i+1][j]

  就能够使得复杂度由O(n^3)降低为O(n^2)

详细证明参见《动态规划算法的优化技巧》--毛子青(会因为论文用i,j,i',j'搞得雾水,但是慢慢推一下就能够出来)

 

#include <cstdio>
#include <cstring>
#define N 1005
int s[N][N],f[N][N],sum[N],n;
int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        memset(f,127,sizeof(f));
        sum[0]=0;
        for(int i=1; i<=n; i++){
            scanf("%d",&sum[i]);
            sum[i]+=sum[i-1];
            f[i][i]=0;
            s[i][i+1]=i;
        }
        for(int i=1; i<=n; i++)
            f[i][i+1]=sum[i+1]-sum[i-1];

        for(int i=n-2; i>=1; i--)
            for(int j=i+2; j<=n; j++)
                for(int k=s[i][j-1]; k<=s[i+1][j]; k++)
                if(f[i][j]>f[i][k]+f[k+1][j]+sum[j]-sum[i-1])
                {
                    f[i][j]=f[i][k]+f[k+1][j]+sum[j]-sum[i-1];
                    s[i][j]=k;
                }
    
        printf("%d\n",f[1][n]);
    }
    return 0;
}

 

值得注意的是:若是求石子合并的最大值,则不能用四边形不等式。可以证明 f[i,j]=max(f[i+1][j],f[i][j-1])+w[i][j] 

 

 

POJ1160

f[i][j]=max(f[k][j-1]+w[k+1][i])

  其中f[i][j]表示前i个村落有j个邮电局,w[i][j]表示[i,j]区间上安装一个邮电局最短路径和

其中w[i][j]邮电局必然是安装在(i+j)/2(中位数)的村落中,若(i+j)/2不为整数,则中间两个村落都可以。证明可以看《算法导论》

至于四边形不等式,这次,可以直接容易得到 s[i][j-1]<=s[i][j]<=s[i+1][j] 稍微证明下就可以出来,凭感觉都是对的。

 

#include <cstdio>
#include <cstring>
#define min(x,y) (x>y?y:x)
int v,p,a[305],sum[305],w[305][305],f[305][35],s[305][35];
int main()
{
    memset(f,127,sizeof(f));
    scanf("%d%d",&v,&p);
    for(int i=1; i<=v; i++){ scanf("%d",&a[i]); sum[i]=a[i]+sum[i-1]; } for(int i=1; i<=v; i++){ w[i][i]=0; for(int j=i+1; j<=v; j++){ w[i][j]=sum[j]-sum[(i+j)/2]-sum[(i+j)/2-1]+sum[i-1]; if((i+j)%2!=0) w[i][j]-=a[(i+j)/2]; } } for(int i=1; i<=v; i++) f[i][1]=w[1][i]; for(int j=2; j<=p; j++){ s[v+1][j]=v-1; for(int i=v; i>=j; i--) { for(int k=s[i][j-1]; k<=s[i+1][j]; k++) if(f[i][j]>f[k][j-1]+w[k+1][i]) { f[i][j]=f[k][j-1]+w[k+1][i]; s[i][j]=k; } } } printf("%d",f[v][p]); return 0; }

 

转载于:https://www.cnblogs.com/Mathics/p/3885745.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值