敏捷个人手机应用:如何使用时中法目标

敏捷个人手机应用:如何查看敏捷个人博客中我们介绍了查看博客,今天我们要继续介绍的是敏捷个人手机应用中时中法的目标管理功能。关于目标,我们在敏捷个人三大体系练习都有涉及,平衡个人练习帮助我们在生活中发现目标,高效个人帮助我们去实现目标,快乐个人帮助我们去持续拥有目标,在这里我需要重点重申的是,工具在目标管理来说是次要的,对目标的认识和追求才是至关重要的。

下面我说一下如何使用时中法目标功能,以便大家可以更为顺利的使用这个工具。

  1. 打开手机应用,登录后切换到【时中】功能,点击最上面的【目标】按钮后,会进入目标管理页面

  2. 这个时候你没有任何目标,你现在可以点击【添加目标】开始加入你的目标

  3. 在手机应用中有两类目标,一类是系统或他人共享的公开目标,你可以和他一起进行,但是你只是一个参与者,你不能更改他人目标下的任务。还有一类是你自己个人的目标,你有权限进行任务维护。下面我们先从公开目标开始,点击上图中的<全家旅游>目标后可以查看这个目标下的任务组成

  4. 如果觉得这也是你想要的目标,那么点击上图的【返回】按钮,回到目标列表页面后,点击【我要实现它】按钮便可以把公开目标添加为你自己的目标了

  5. 添加后可以看到你的目标列表已经有了这个目标了

  6. 这时目标的任务会自动进入时中的【执行】页签中。点击【执行】按钮,进入执行页面,可以看到【未设定开始时间的目标任务】中有刚才加入目标的所有任务

  7. 现在,你可以进行任务的时间计划了。长按任务后弹出任务编辑窗口,例如我在上图的<研究并确定一个目的地>任务上长按之后,弹出任务编辑页面。如果你对时间不太好把握,先不做时间计划也行,可以放到周计划中去进行。

  8. 如果上面计划完成后,你可以开始去执行你的目标任务了。在【执行】页面中,找到你做完的任务,向右滑动,则可以标记完成。例如我们在【列一个目的地列表】任务上向右滑动,则会弹出一个文字列表框,我们可以在这里输入任务备注。

  9. 提交后就可以看到这个任务被标记完成了

  10. 如果你想了解目标的执行进度,可以点击【目标】切换回目标页面,目标下的进度条显示的是完成的任务进度(目前进度只是按照任务数的比例来计算)

  11. 你点击目标后,可以看到任务列表中也会标记完成。为了让你关注你还没做的,已经完成的任务会自动排列到任务最后

  12. 上面是添加公开目标的过程。现在我们来添加一个属于你自己的目标。例如我要为敏捷个人手机应用设定了一个目标,于是点击添加目标后,在添加目标页面最上面的文本框中输入<敏捷个人手机应用>作为目标标题,点击【添加】后弹出目标编辑页面

  13. 在目标编辑页面中,我们要做几项工作,这些工作必须认真思考后填写,否则制定的目标也没有多大意义。

    首先,选择目标所属的生活维度。应用中列出的敏捷个人生活方向盘的8个维度

    然后,根据心流模型,如果我们的目标是有一定挑战而且努力就能达到的是最合适的,在这里选择你的挑战难度

    接着,问问自己,这是你不得不做,还是应该做的,或是想做的、真正想做的

    最后,问问自己为什么要设定这个目标,好好思考并写下来

    以上都完成后,才算得上一次目标制定完成,点击【保存】添加后可以看到目标中已经有了自己的目标了(下面的进度条是我执行后的显示,刚添加是现实的是0%)

  14. 自己的目标制定完成后,必须再做的一步就是目标的任务拆解了。在上图中点击目标进入目标任务页面

  15. 点击【添加任务】进行任务编辑

    这里需要提一下的是完成状态,这个选择会影响在【执行】中滑动标记时的方式。上面步骤说明中的【列一个目的地列表】任务是字符串列表,所以标记时弹出的是一个列表文本框。如果你只是想打钩标记,那么选择直接完成。如果你还希望完成时输入数字,则选择完成数量。如果你希望给自己打星,则可以选择完成满意度。建议大家先都选择直接完成,这样可以有种标记完成的快感
    J

  16. 如果任务添加完后,想要更新的话,那就在任务列表中长按进入编辑页面

  17. 如果想删除任务,则滑动任务来删除即可

目标工具虽重要,但对目标的认识是第一步,欢迎加入敏捷个人 http://www.zhoujingen.cn


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
SQLAlchemy 是一个 SQL 工具包和对象关系映射(ORM)库,用于 Python 编程语言。它提供了一个高级的 SQL 工具和对象关系映射工具,允许开发者以 Python 类和对象的形式操作数据库,而无需编写大量的 SQL 语句。SQLAlchemy 建立在 DBAPI 之上,支持多种数据库后端,如 SQLite, MySQL, PostgreSQL 等。 SQLAlchemy 的核心功能: 对象关系映射(ORM): SQLAlchemy 允许开发者使用 Python 类来表示数据库表,使用类的实例表示表中的行。 开发者可以定义类之间的关系(如一对多、多对多),SQLAlchemy 会自动处理这些关系在数据库中的映射。 通过 ORM,开发者可以像操作 Python 对象一样操作数据库,这大大简化了数据库操作的复杂性。 表达式语言: SQLAlchemy 提供了一个丰富的 SQL 表达式语言,允许开发者以 Python 表达式的方式编写复杂的 SQL 查询。 表达式语言提供了对 SQL 语句的灵活控制,同时保持了代码的可读性和可维护性。 数据库引擎和连接池: SQLAlchemy 支持多种数据库后端,并且为每种后端提供了对应的数据库引擎。 它还提供了连接池管理功能,以优化数据库连接的创建、使用和释放。 会话管理: SQLAlchemy 使用会话(Session)来管理对象的持久化状态。 会话提供了一个工作单元(unit of work)和身份映射(identity map)的概念,使得对象的状态管理和查询更加高效。 事件系统: SQLAlchemy 提供了一个事件系统,允许开发者在 ORM 的各个生命周期阶段插入自定义的钩子函数。 这使得开发者可以在对象加载、修改、删除等操作时执行额外的逻辑。
GeoPandas是一个开源的Python库,旨在简化地理空间数据的处理和分析。它结合了Pandas和Shapely的能力,为Python用户提供了一个强大而灵活的工具来处理地理空间数据。以下是关于GeoPandas的详细介绍: 一、GeoPandas的基本概念 1. 定义 GeoPandas是建立在Pandas和Shapely之上的一个Python库,用于处理和分析地理空间数据。 它扩展了Pandas的DataFrame和Series数据结构,允许在其中存储和操作地理空间几何图形。 2. 核心数据结构 GeoDataFrame:GeoPandas的核心数据结构,是Pandas DataFrame的扩展。它包含一个或多个列,其中至少一列是几何列(geometry column),用于存储地理空间几何图形(如点、线、多边形等)。 GeoSeries:GeoPandas中的另一个重要数据结构,类似于Pandas的Series,但用于存储几何图形序列。 二、GeoPandas的功能特性 1. 读取和写入多种地理空间数据格式 GeoPandas支持读取和写入多种常见的地理空间数据格式,包括Shapefile、GeoJSON、PostGIS、KML等。这使得用户可以轻松地从各种数据源中加载地理空间数据,并将处理后的数据保存为所需的格式。 2. 地理空间几何图形的创建、编辑和分析 GeoPandas允许用户创建、编辑和分析地理空间几何图形,包括点、线、多边形等。它提供了丰富的空间操作函数,如缓冲区分析、交集、并集、差集等,使得用户可以方便地进行地理空间数据分析。 3. 数据可视化 GeoPandas内置了数据可视化功能,可以绘制地理空间数据的地图。用户可以使用matplotlib等库来进一步定制地图的样式和布局。 4. 空间连接和空间索引 GeoPandas支持空间连接操作,可以将两个GeoDataFrame按照空间关系(如相交、包含等)进行连接。此外,它还支持空间索引,可以提高地理空间数据查询的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值