前馈神经网络练习:使用tensorflow进行葡萄酒种类识别

 


 


数据处理

样本数据描述

样本数据集是double类型的178 * 14矩阵,第一列表示酒所属类别,后面13列分别表示当前样本的13个属性:

1) Alcohol

2) Malic acid

3) Ash

4) Alcalinity of ash 

5) Magnesium

6) Total phenols

7) Flavanoids

8) Nonflavanoid phenols

9) Proanthocyanins

10) Color intensity

11) Hue

12) OD280/OD315 of diluted wines

13) Proline

数据预处理

将文件内容读入矩阵,由于标签有三类,分别是1、2、3,于是进行二进制化。

由于各个特征的值差距较大,在进行训练的时候收敛的速度极慢可能会导致模型无法学习到可靠参数,于是要进行特征缩放,在此处选择均值归一化

下图给出处理后的数据信息

    

 

 

其中可以看到,在没有进行特征缩放的时候,数据间的范围差距过大,在进行归一化后数据间的范围差距明显缩小,并且所有的特征值均在-1到1之间

数据的使用

按照8:2比例,将数据划分为训练数据和测试数据;训练数据部分用来训练模型参数,测试部分用来验证模型效果。

下面的代码起到按照8:2比例随机分割数据的作用:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2)

模型

构建模型

创建一个含有一个隐藏层的前馈神经网络,由于特征有13个,所以网络的输入节点有13个,添加一个隐藏层,使其含有50个节点,由于葡萄酒的种类有3种,故,网络有三个输出节点

相关参数:

隐藏层

l1 = add_layer(xs, 13, 50, 'l1', activation_function=tf.nn.tanh) 

输出层

prediction = add_layer(l1, 50, 3, 'l2', activation_function=tf.nn.softmax)

设定学习率为0.5

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

避免过拟合采用Dropout

sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: .5})

整体结构

采用tensorboard绘制出整个神经网络的图结构

启动神经网络

进入项目的目录,打开PowerShell,执行命令:python3 .\classify.py启动神经网络,在训练的过程中迭代1000次,并每50次输出一下此时的准确率

for i in range(1000):
    # 训练
    sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: .5})
    if i % 50 == 0:
        # 查看loss
        train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
        test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
        train_writer.add_summary(train_result, i)
        test_writer.add_summary(test_result, i)
        # 输出准确率
        print(compute_accuracy(X_test, y_test))

 


结果

输出的准确率

在训练的过程中迭代1000次中每50次输出一下此时的准确率

查看损失函数图像

借助tensorboard,将训练过程可视化,在代码执行完毕后在项目目录中生成“logs”文件夹,可视化文件存在此处。

在项目目录中的PowerShell中执行命令tensorboard --logdir='logs'得到可视化文件链接

在浏览器中输入此网址(http://lichaoxing-PC:6006),可以得到详细的可视化图形

准确率图像

在测试的时候,绘制准确率与迭代次数(1000次)的函数图像;由于模型的收敛速度比较快,无法观察出收敛过程,于是可以在绘制一个迭代次数在0到100间的图像便于观察收敛过程

遇到的问题

在搭建好神经网络模型后,直接将没有进行特征缩放的数据输入模型,结果发现模型收敛速度极慢,导致模型失效,测试输出的准确率非常低

观察loss函数图像,可以看出模型并没有收敛的趋势

解决此问题的办法就是进行特征缩放,可以参考:https://blog.csdn.net/u012328159/article/details/51030366


代码

classify.py

#coding:utf-8
import tensorflow as tf
from w_i_n_e import wine
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
#import pylab as pl
from plot import plot_it

# 归一化方法
def Normalize(data):
    m = np.mean(data)
    mx = max(data)
    mn = min(data)
    return [(float(i) - m) / (mx - mn) for i in data]

# 加载数据
mywine = wine('./wine.all.txt')
X = mywine.data
# 特征缩放---归一化
for _ in range(13):
    X[:, _] = Normalize(X[:, _])
y = mywine.target
y = LabelBinarizer().fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2)

# add_layer
def add_layer(inputs, in_size, out_size, layer_name, activation_function=None, ):
    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, )
    Wx_plus_b = tf.matmul(inputs, Weights) + biases
    # dropout---消除过拟合
    Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob)
    if activation_function is None:
        outputs = Wx_plus_b
    else:
        outputs = activation_function(Wx_plus_b, )
    tf.summary.histogram(layer_name + '/outputs', outputs)
    return outputs
# 评估---准确率
def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result

# 定义网络输入的占位符
keep_prob = tf.placeholder(tf.float32)
xs = tf.placeholder(tf.float32, [None, 13])
ys = tf.placeholder(tf.float32, [None, 3])

# 添加输出图层
l1 = add_layer(xs, 13, 50, 'l1', activation_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 3, 'l2', activation_function=tf.nn.softmax)


# 损失函数---loss
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                              reduction_indices=[1]))  # loss
tf.summary.scalar('loss', cross_entropy)
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

sess = tf.Session()
merged = tf.summary.merge_all()
# summary
train_writer = tf.summary.FileWriter("logs/train", sess.graph)
test_writer = tf.summary.FileWriter("logs/test", sess.graph)

init = tf.global_variables_initializer()
sess.run(init)
A = []
I = []
for i in range(1000):
    # 训练
    sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: .5})
    if i % 50 == 0:
        # 查看loss
        train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1})
        test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
        train_writer.add_summary(train_result, i)
        test_writer.add_summary(test_result, i)
        # 输出准确率
        print(compute_accuracy(X_test, y_test))
    A.append(compute_accuracy(X_test, y_test))
    I.append(i)

plot_it(I, A)

w_i_n_e.py

#coding:utf-8
from numpy import *

# wine数据结构---读入数据到矩阵
class wine(object):

    data = zeros((178,13))
    target = zeros((178,1))
    def __init__(self, filename):
        self.filename = filename
        
        fl = open(self.filename, 'r')
        lines = fl.readlines()
        row = 0
        for line in lines:
            list = line.strip('\n').split(',')
            wine.data[row:] = list[1:14]
            wine.target[row:] = list[0:1]
            row+=1
        fl.close()
    

file.py

#coding:utf-8

from w_i_n_e import wine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
import numpy as np

mywine = wine('./wine.all.txt')
X = mywine.data
y = mywine.target
print('---------------------------')
print("特征矩阵:", X.shape)
print('---------------------------')
print("标签向量:", y.shape)
print('---------------------------')
print("y原始:\n", y)
y = LabelBinarizer().fit_transform(y)
print("y二进制化:\n", y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2)

print('---------------------------')
print("特征矩阵:", X.shape)
print('---------------------------')
print("标签矩阵:", y.shape)

def Normalize(data):
    m = np.mean(data)
    mx = max(data)
    mn = min(data)
    return [(float(i) - m) / (mx - mn) for i in data]

print("X原始:\n")
print(X)

for _ in range(13):
    X[:, _] = Normalize(X[:, _])
print("X归一化处理:\n")
print(X)

plot.py

#coding:utf-8

import matplotlib.pyplot as plt

def plot_it(x, y):
    plt.figure(figsize=(7,5))
    plt.subplot(211)  #两行一列,第一个图
    plt.plot(x, y, lw = 1.5,label = 'i:1-1000') 
    plt.grid(True)
    plt.legend(loc = 0)
    plt.ylabel('accuracy')
    plt.title('accuracy-i')


    plt.subplot(212) #两行一列.第二个图
    plt.plot(x[0: 101], y[0: 101],'g', lw = 1.5, label = 'i:1-100')
    plt.grid(True)
    plt.legend(loc = 0)
    plt.xlabel('i')
    plt.ylabel('accuracy')
    plt.show()

readme.txt

#启动
python3 classify.py

#tensorboard
tensorboard --logdir='logs'

 


本节完......

转载于:https://www.cnblogs.com/xinglichao/p/9246008.html

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
随着我国葡萄酒业的逐步发展,葡萄酒生产企业的规模和数量不断扩大。但中国的葡萄酒业仍面临着进口酒的激烈竞争以及质量检测体系不明确带来的市场紊乱。针对这些问题,本文分析了葡萄酒质量人工品尝存在的不足,并提出了如何提高基于数据挖掘技术的葡萄酒质量等级的识别率,对中国葡萄酒市场的稳定发展以及更好地酿造出高质量的葡萄酒有着实际的应用价值。在数据挖掘中,经常会遇到不平衡数据的分析。相对于多数类来说,少数类样本对准确率的影响力小,这意味着对所有样本进行分类,可以在不识别出任何少数类样本的情况下得到很高的正确率,识别少数类的分类规则也就被忽略了。本文的创新点在于从不平衡样本中提取平衡样本进行建模并对测试样本预测,进行多次的循环,得到多次的预测结果,选择次数出现最多的预测结果作为最终的预测结果,大大提高了低质量葡萄酒识别率。本文采用BP神经网络对葡萄酒种类进行模式识别,通过对在意大利同一区域里三种的葡萄酒的化学成分分析,数据含有178个样本,每个样本含有13个特征分量,每个样本的类别标签已定。其中将这178个样本的65%作为训练样本,另外35%作为测试样本,用训练样本对BP神经网络进行训练可以得到相对应的分类模型,在利用训练好的模型对测试样本进行分类识别

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值