AR 与 AI 技术是如何让勇士重回王者的?
很多同学跑来问 Vergil,
Vergil也要做 AI 了?
难道是看到AI圈比较有钱,所以出轨了?
然而 Vergil 并没有。。
实在是AR 和 AI 关系太纠缠,
很多AR产品中都有结合了AI。
在这次大勇士队夺冠中,
AR 与 AI 技术的结合就已经显示出了它的威力。
要知道在13、14年的时候,
勇士还只是一支常规赛西部后半段的球队,
季后赛从未突破第二轮。
然而在14年的夏天没有任何核心交易的情况下,
只是来了一个教练科尔,
竟然就一路高歌猛进,
时隔40年再夺总冠军。
连马刺骑士雷霆这些强队都无招架之力。
连续三年进入总决赛,两次冠军一次亚军,
前后差别和农药改版有得一拼
然而带来这么翻天覆地的变化
并不是教练科尔,
来中国旅游不幸跌落谷底而找到了什么秘籍
而是因为应用了一系列的黑科技以及AR和人工智能技术。
看过布拉德皮特的电影 Money Ball 的小伙伴们可能知道
勇士队前几年的处境,
与2001年时的Oakland Athletics 非常的相似。
2001年败给Yankee后,
明星球员Johnny Damon, Jason Giambi, Jason Isringhausen 相继出走,
整个球队士气不振。
偏偏在这时,球队还面临着拙荆见肘的预算。
布拉德皮特饰演的Beane 巧妇难为无米之崔。
在这样走投无路的情形下,
他孤注一掷决定采用耶鲁经济学毕业生
Peter Brand 建立的全新的基于统计数据的球员价值评估体系。
寻找被低估的球员,
并以数据为依据用全新的视角来理解棒球的游戏规则,
最后战胜了在预算上占有决定性优势的传统豪门强队。
这应该是数据科学第一次进入到了体育领域,
而Second Spectrum 所做的,
正是Money Ball 的升级版。
篮球运动,
或者说绝大部分运动,从本质上来说,
是一个关于位置移动的游戏。
我们可以把在场上运动的运动员,
看成一个一个吃豆人游戏里运动的豆子。
如果能够通过AI 来分析判断这些位置运动,
并找出其中的模式。
就能帮助我们改进训练方法,
了解自己的行动所存在的不足。
而在这类事务上,
Money Ball 和 Alpha GO事件,
已经证明人们的传统经验,是非常不靠谱的。
为了分析这些数据,
人类教练必须记住每一帧的运动,
理解并分析背后的关系。
人类教练无法独立完成这项任务。
但是算法究竟能怎么帮助我们来分析比赛呢?
来,让我举个例子。
灌篮高手告诉我们,
抢篮板球是非常重要的。
樱木花道刚加入时,即使啥都不会,
但光是篮板抢的好,
就已经让他在比赛中有了一席之地。
但究竟在什么位置,才能容易抢到篮板呢?
我们并不知道。
之前,我们最多只能记录下,谁抢到了篮板。
但其实很多因素,
都会影响最终谁能抢到这个篮板。
谁,从哪一个位置投的蓝
其他运动员的位置,
球落在篮筐的哪一边,在空中飞行时,运动员如何走位等等,
每一个因素,都会影响获得篮板的概率。
通过计算篮球会掉落的可能位置,
球员抢球的成功率,
球员的移动位置这三个因素,
就能够计算出,
每个球员在每个点位,
抢到篮板的概率。
教练通过这些数据,
就可以有针对性得提出训练方案,
以改进成绩。
经过这两年的发展。
电脑已经能理解像掩护卷切配合,
擋拆之类的高级技巧。
还能预测在不同环境下的投篮命中率。
而这些数据,若是通过AR实时呈现,
就能够给到运动员更实时的反馈。
从而能更好的帮助运动员认识到自己的正确与错误。
同样的技术,还能够被应用到安防,
救灾演练等等很多与位置移动分析相关的领域。
这只是AR与AI结合的一个小案例。
事实上,
任何人类需要实时数据反馈与辅助决策的场景,
都可能需要同时应用AR 与 AI技术。
所以。AR & AI are better together。