
回顾:
一元复合函数
其求导有链式法则:
画出函数关系图:
这个规则推广到多元复合函数也是适用的。本篇就来讲一讲这个基本方法,掌握了它各种多元复合函数求导,包括各种隐函数求导,无论多复杂都手到擒来。
一. 基本步骤
非常简单:
(1)先理清函数关系,画出函数关系图;
(2)按照规则写出式子(有几条路径就是几部分的和,路径的每段对应的导数用乘法连起来)。
剩下的就只是计算,还要注意一元函数关系用直立的导,多元函数关系用偏导;还有通常的二元函数或多元函数(非隐函数,方程式才隐含隐函数),比如
很多学生追求题海战术,往往忽略第一步,结果做了大量的题目,遇到难题还是不会。
二. 若干例子
下面通过几个例子来阐述。
例1
解:(1)分析函数关系,

(2)按规则写出式子
注意:上式两个
说明:整个函数关系是指“复合之后
而将整个函数关系(含中间变量)表示成的上图,是对整个函数关系的一种分解,分解之后每部分关系都是相对独立的关系(不再混杂不清),即
故在按函数关系图写出式子时,不需要再考虑混杂关系,只需要按规则写即可。
例2 隐函数求导也一样,除了时刻注意到隐含的函数关系。比如,
解:(1)
先画出函数关系图(

为了求
按规则写出式子:
(2) 再求二阶偏导,按定义二阶偏导就是对一阶偏导结果,再求一次一阶偏导
画出函数关系图,注意

所以,上式先是商式求导,再注意到上图的函数关系,正常计算即可(略)。
例3 设
解:(1)先理清函数关系
要求
又
画函数关系图(别忘了隐函数关系):

(2) 方程式两边
可解出
同理,方程两边同时对
(3) 于是,由全微分公式,可得
例4 方程组
分析:若从
故该方程组隐含两个二元函数关系:
那么就可以求
画出函数关系图:

原方程组两边同时对
即
解这个关于
同理,原方程组两边同时对
总结:以上就是多元复合(隐)函数(无论有表达式还是无表达式)求导(包括求一阶、二阶导)的基本方法,通过一两道题掌握了这个基本方法,不用搞题海战术,这类题也都能轻松解决。
主要参考文献
高等数学,同济版。
————————————————————
原创作品,转载请注明。