二元函数求导公式_【高等数学】多元复合函数求导的基本方法

本文介绍了多元复合函数求导的基本方法,强调了理解函数关系和使用链式法则的重要性。通过四个具体的例子,详细展示了如何求解一阶和二阶偏导,包括隐函数的情况。掌握这种方法能有效应对复杂的求导问题,避免题海战术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

aa481e0080d33e38fdfabc5c80685c51.png

回顾

一元复合函数

其求导有链式法则:

画出函数关系图:

,可见从
有一条路径,所以结果是 1 项的和,每一段路径(对应一个导数)乘起来。

这个规则推广到多元复合函数也是适用的。本篇就来讲一讲这个基本方法,掌握了它各种多元复合函数求导,包括各种隐函数求导,无论多复杂都手到擒来。

一. 基本步骤

非常简单:

(1)先理清函数关系,画出函数关系图;

(2)按照规则写出式子(有几条路径就是几部分的和,路径的每段对应的导数用乘法连起来)。

剩下的就只是计算,还要注意一元函数关系用直立的导,多元函数关系用偏导;还有通常的二元函数或多元函数(非隐函数,方程式才隐含隐函数),比如

, 其中的
是相互独立的,即
, 也即通常求偏导时,将其余变量当常数对待。

很多学生追求题海战术,往往忽略第一步,结果做了大量的题目,遇到难题还是不会。

二. 若干例子

下面通过几个例子来阐述。

例1

, 求
.

解:(1)分析函数关系,

的函数,
的函数
,据此画出函数关系图:

31ca0b7c6e48c7cd77040811f8a97663.png

(2)按规则写出式子

有两条路径:
直接到
先到

(计算略)

注意:上式两个

的含义是不同的,左端的
是整个函数关系中的偏导关系,而右端的
只是这个分支路径的偏导关系,只考虑
的偏导,将
当常数对待。

说明:整个函数关系是指“复合之后

只是
的二元函数(不含中间变量)”,即

而将整个函数关系(含中间变量)表示成的上图,是对整个函数关系的一种分解,分解之后每部分关系都是相对独立的关系(不再混杂不清),即

故在按函数关系图写出式子时,不需要再考虑混杂关系,只需要按规则写即可。

例2 隐函数求导也一样,除了时刻注意到隐含的函数关系。比如,

,求
.

解:(1)

隐含了函数关系
. 【当然,根据问题需要,它也可以隐含函数关系:

先画出函数关系图(

的函数,
的函数):

ae80dbea828a171b412b2cac0022eeb0.png

为了求

,两边同时对
求导,注意隐含的函数关系
.

按规则写出式子:

(2) 再求二阶偏导,按定义二阶偏导就是对一阶偏导结果,再求一次一阶偏导

,代入

画出函数关系图,注意

的地位与
是相同的,仍有相同的函数关系:

95da88e074b847dc8348b4c0853a2434.png

所以,上式先是商式求导,再注意到上图的函数关系,正常计算即可(略)。

例3

有二阶连续偏导,已知方程
, 求
.

解:(1)先理清函数关系

是方程式,所以这是个隐函数,其中有
,所以实际上是
, 它隐含的函数关系是
.

要求

, 那就是全微分公式,需要先求

中的两个位置变量带表达式,所以,先引入中间变量(复合函数)简化关系,令
, 则方程式变为

画函数关系图(别忘了隐函数关系):

24b592d73cf0af74ad114ada13ae584e.png

(2) 方程式两边

同时对
求导,按照上图和规则写式子:

共有 3 条路径:
,
,
. 故

是自己引入的中间变量,不是原题目里的,按照约定用位置下标来写,即计算上式得

可解出

同理,方程两边同时对

求导,可推得

(3) 于是,由全微分公式,可得

例4 方程组

分析:若从

解出
再代入
可得
, 该隐函数可隐含函数关系
; 同理,若先从第1个方程解出
再代入第2个方程,可确定隐函数函数关系
.

故该方程组隐含两个二元函数关系:

那么就可以求

.

画出函数关系图:

0f4679ed4d864ca6fccf701ceccf52bd.png

原方程组两边同时对

求导,根据上图和规则可得

解这个关于

的二元一次方程组,即可求得
.

同理,原方程组两边同时对

求导,解方程组可求得
.

总结:以上就是多元复合(隐)函数(无论有表达式还是无表达式)求导(包括求一阶、二阶导)的基本方法,通过一两道题掌握了这个基本方法,不用搞题海战术,这类题也都能轻松解决。

主要参考文献

高等数学,同济版。

————————————————————

原创作品,转载请注明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值