
微积分的核心是极限(Limit),求导(Derivative)是微积分的重要内容,本质就是求极限。导数公式有很多, 靠死记还是比较麻烦的,但这又是微积分的基础,不然接下去导数的应用(求切线、求法线、增减性、求极值、求凹凸性等)都没法学,更不用说导数的逆运算——求积分了。所以本文想系统的梳理一下求导法则及常见函数求导公式,争取利用最少的知识把下面公式都推导出来。

一、导数的定义

AB弦的斜率是
(Differentiation from first principle)
也可以用如下公式求
那么根据上述定义,我们计算几个常见的求导公式。
(1)
(2)
![]()
因为<![]()