自编码器代码python_变分自动编码器的实现

下面是如何计算mu和{}以及{}的计算方法:

我不确定您代码的linear部分。因此,我建议:

请注意,在编码器端的完全连接层之前,我有一个conv4形状层:[7, 7, 256]。在# These are the weights and biases of the mu and sigma on the encoder side

w_c_mu = tf.Variable(tf.truncated_normal([7 * 7 * 256, latent_dim], stddev=0.1), name='weight_fc_mu')

b_c_mu = tf.Variable(tf.constant(0.1, shape=[latent_dim]), name='biases_fc_mu')

w_c_sig = tf.Variable(tf.truncated_normal([7 * 7 * 256, latent_dim], stddev=0.1), name='weight_fc_sig')

b_c_sig = tf.Variable(tf.constant(0.1, shape=[latent_dim]), name='biases_fc_sig')

epsilon = tf.random_normal([1, latent_dim])

with tf.variable_scope('mu'):

mu = tf.nn.bias_add(tf.matmul(conv4_reshaped, w_c_mu), b_c_mu)

tf.summary.histogram('mu', mu)

with tf.variable_

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是使用PyTorch实现变分自动编码器的步骤: 1.导入所需的库和模块,包括torch、torch.nn、torch.nn.functional、torchvision等。 2.定义设备配置,判断是否有可用的GPU,如果有则使用GPU,否则使用CPU。 3.定义变分自动编码器的编码器和解码器。编码器由两个全连接层和一个输出层组成,解码器由一个全连接层和一个输出层组成。 4.定义变分自动编码器的前向传播函数forward(),其中包括编码器和解码器的前向传播过程。 5.定义变分自动编码器的损失函数,包括重构误差和KL散度。 6.定义优化器,使用Adam优化器。 7.训练模型,包括前向传播、计算损失、反向传播和优化器更新参数。 8.保存模型和生成样本图片。 下面是完整的代码实现: ```python import os import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import transforms from torchvision.utils import save_image import matplotlib.pyplot as plt # 设备配置 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 定义变分自动编码器的编码器和解码器 class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() self.fc1 = nn.Linear(784, 400) self.fc21 = nn.Linear(400, 20) self.fc22 = nn.Linear(400, 20) self.fc3 = nn.Linear(20, 400) self.fc4 = nn.Linear(400, 784) def encode(self, x): h1 = F.relu(self.fc1(x)) return self.fc21(h1), self.fc22(h1) def reparameterize(self, mu, logvar): std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return mu + eps*std def decode(self, z): h3 = F.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)) def forward(self, x): mu, logvar = self.encode(x.view(-1, 784)) z = self.reparameterize(mu, logvar) return self.decode(z), mu, logvar # 定义变分自动编码器的损失函数 def loss_function(recon_x, x, mu, logvar): BCE = F.binary_cross_entropy(recon_x, x.view(-1, 784), reduction='sum') KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return BCE + KLD # 定义优化器 vae = VAE().to(device) optimizer = torch.optim.Adam(vae.parameters(), lr=1e-3) # 训练模型 def train(epoch): vae.train() train_loss = 0 for batch_idx, (data, _) in enumerate(train_loader): data = data.to(device) optimizer.zero_grad() recon_batch, mu, logvar = vae(data) loss = loss_function(recon_batch, data, mu, logvar) loss.backward() train_loss += loss.item() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item() / len(data))) print('====> Epoch: {} Average loss: {:.4f}'.format( epoch, train_loss / len(train_loader.dataset))) # 保存模型和生成样本图片 if not os.path.exists('./vae_samples'): os.mkdir('./vae_samples') def save_samples(epoch): with torch.no_grad(): sample = torch.randn(64, 20).to(device) sample = vae.decode(sample).cpu() save_image(sample.view(64, 1, 28, 28), './vae_samples/sample_' + str(epoch) + '.png') # 加载MNIST数据集 batch_size = 128 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) # 训练模型并保存样本图片 for epoch in range(1, 21): train(epoch) save_samples(epoch) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值