matlab 位势涡度,南京信息工程大学《动力气象学》复习重点(上)

本文总结了《动力气象学》第一章的关键知识点,包括大气运动的基本方程组:运动方程、连续方程及热力学能量方程等。详细介绍了旋转参考系与局地直角坐标系下的方程表达,并讨论了p坐标系的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《动力气象学》复习重点

Char1 大气运动的基本方程组

1、旋转参考系

(1)运动方程 p dt V d ++?-?-=21ρ

(2)连续方程 0=??+V dt

d ρ ▽·V 为速度散度,代表气团体积的相对膨胀率。体积增大时,(▽·V>0),密度减小;体积减小时,(▽·V<0),密度增大。

0=??+dt

d ρρ ▽·(ρV ) 为质量散度,代表单位时间单位体积内流体质量的流入流出量。流入时▽·(ρV ) <0,密度增大;流出时▽·(ρV ) >0,密度减小。

(3)热力学能量方程 Q dt

d p dt d c v =+ 内能变化率+压缩功率=加热率 Q dt

d dt d c p =-α α=1/ρ

56c6e684b53ad2342f7c67b3e555fee3.png

1b3df684a1eca8446dff765cde1e5c5a.png

2、局地直角坐标系(z 坐标系)中的基本方程组

111()0ln ,,x y z v p du p fv F dt x dv p fu F dt y dw p g F dt z d u v w dt x y z p RT dT d dT dP d c p Q c a Q Q dt dt dt dt dt

ρρρρρραθ??=-++?????=--+?????=--+????????+++=?????=??+=-==?? 运动方程、连续方程、能量方程是预报方程,状态方程是诊断方程。

3、p 坐标系中的基本方程组

### MATLAB位势法算法实现 位势法是一种用于求解运输问题的有效方法,在MATLAB中可以通过编写特定函数来实现这一过程。下面是一个简单的例子,展示了如何利用位势法解决最小化成本的运输问题。 #### 定义输入数据 首先定义需求量、供应量以及单位运价矩阵作为输入参数: ```matlab % 需求向量 (列数代表客户的需求) demand = [30, 20, 70]; % 供给向量 (行数表示供应商可提供货物数量) supply = [50, 60, 10]; % 单位运费表(每行对应一个供方,每列表示需方) cost_matrix = [ 8, 6, 10; 9, 12, 13; 14, 9, 16]; ``` #### 初始化变量并计算初始可行方案 通过西北角法则或其他方式获得初步分配方案,并初始化位势数组u和v: ```matlab [m,n]=size(cost_matrix); x=zeros(m,n); % 初始流量设为零 for i=1:min(sum(supply),sum(demand)) for j=1:m for k=1:n if supply(j)>0 && demand(k)>0 x(j,k)=min([supply(j),demand(k)]); supply(j)=supply(j)-x(j,k); demand(k)=demand(k)-x(j,k); end end end end u=[0,zeros(1,n-1)]; v=zeros(1,m); % 设置第一个位势值为0其余待定 ``` #### 进入迭代优化阶段 不断调整非基变量对应的检验数值直到所有检验数均不大于零为止;当存在负检验数时,则说明当前不是最优解,需要继续改进路径直至找到最佳解决方案[^1]。 ```matlab while true flag=true; delta=[]; for i=1:m for j=1:n if x(i,j)==0 temp=(i>1)*u(i-1)+(j>1)*v(:,j-1)+... cost_matrix(i,j)-(i<m)*u(i+1)-(j<n)*v(:,j+1); if isempty(delta)||temp<delta delta=temp; row=i; col=j; end if delta<=0 break,end end end if ~isempty(delta)&&delta<=0,break,end end if flag==true || isempty(delta) disp('已达到最优解'); break; else [~,path]=shortest_path(x,row,col); % 寻找闭回路 min_val=min(abs(diag(flipud(tril(path))))); for ii=1:length(path(:)) if mod(ii,2)==1 x(path(ii))=x(path(ii))+min_val*(-1)^((ii+1)/2); else x(path(ii))=x(path(ii))-min_val*(-1)^(ii/2); end end u(row)=(row>1)*u(row-1)+cost_matrix(row,col)-(row<m)*u(row+1)-v(col); v(col)=cost_matrix(row,col)-u(row)+(col>1)*v(col-1)-(col<n)*v(col+1); end end ``` 此代码片段实现了基于位势法的运输问题求解器,能够有效地寻找使总运输费用最低的最佳分配策略[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值