高大动Chap3—保守属性、位温与尺度守恒

高大动笔记:Chap3—保守属性、位温与尺度守恒

根据《高等大气动力学》课程笔记总结,供需要的同学参考,有缺漏或错误的请联系我改正,谢谢!

超链接有系列文章的链接,每一个对应一章

Chap1—基本运动方程、初值问题

高大动Chap1—基本运动方程、初值问题-CSDN博客

Chap2—大气运动的整体性质

高大动Chap2—大气运动的整体性质-CSDN博客


目录

高大动笔记:Chap3—保守属性、位温与尺度守恒

一、保守属性

1.保守属性的定义

2.保守属性的性质

二、自由大气中的运动和熵

1.位温

2.熵

三、位势涡度

1.正压大气

2.斜压大气

四、涡度和散度、能量间的相互作用

1.不同角度看待能量间相互作用

2.Helmholtz分解定理

3.整层无辐散自由大气中能量转换规律

参考文献

参考的教材

前置知识教材


一、保守属性

1.保守属性的定义

F是空气质点的属性,若在运动过程中,每一质点保持不变,则F就叫做保守属性

\frac{\mathrm{d} F}{\mathrm{d}t}=\dot{F}=0

2.保守属性的性质

(1)保守属性的函数G(F)为保守属性

\frac{\mathrm{d} G(F)}{\mathrm{d}t}=\frac{\mathrm{d} G}{\mathrm{d}F}\frac{\mathrm{d} F}{\mathrm{d}t}=0

(2)保守属性F_{1}F_{2}函数G_{1}G_{2}线性组合以及积或商(分母不为0)也是保守属性

\left\{\begin{array} {lr} \frac{\mathrm{d}}{\mathrm{d}t}(aG_{1}+bG_{2})=a\dot{G_{1}}+b\dot{G_{2}}=0 \\ \frac{\mathrm{d}}{\mathrm{d}t}(G_{1}G_{2})=G_{1}\dot{G_{2}}+\dot{G_{1}}G_{2}=0 \\ \frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{G_{1}}{G_{2}}\right)=\frac{\dot{G_{1}}G_{2}-G_{1}\dot{G_{2}}}{G_{2}^2}=0 \end{array}\right.

(3)保守属性沿大气的积分必然是守恒量

下面给出保守属性沿大气的积分必然是守恒量的证明,即证明如下式子

\frac{\partial}{\partial t}\iiint g^{-1}p_{s}F \mathrm{d}s \mathrm{d}\sigma =g^{-1}\iiint\frac{\partial}{\partial t}(p_{s}F)\mathrm{d}s\mathrm{d}\sigma

因为

\frac{\partial}{\partial t}(p_{s}F)=p_{s}\frac{\partial F}{\partial t}+F\frac{\partial p_{s}}{\partial t}

连续方程

\begin{aligned} &\frac{\partial p_{s}}{\partial t}+\nabla\cdot(p_{s}\boldsymbol{v})=0\\ &\frac{\partial p_{s}}{\partial t} +\frac{1}{a}\frac{\partial (p_{s}v_{\theta})}{\partial \theta} +\frac{1}{a\sin\theta}\frac{\partial (p_{s}v_{\lambda})}{\partial \lambda} +\frac{\partial (p_{s}\dot{\sigma})}{\partial \sigma}=0 \end{aligned}

可得

\begin{aligned} &\frac{\partial}{\partial t}(p_{s}F)=p_{s}\frac{\partial F}{\partial t}-F\nabla\cdot(p_{s}\boldsymbol{v})\\ =&p_{s}\left(\frac{\mathrm{d}F}{\mathrm{d}t}-\boldsymbol{v}\cdot\nabla F\right)-F\nabla\cdot(p_{s}\boldsymbol{v})\\ =&p_{s}\frac{\mathrm{d}F}{\mathrm{d}t}-\left(p_{s}\boldsymbol{v}\cdot\nabla F+F\nabla\cdot(p_{s}\boldsymbol{v})\right)\\ =&p_{s}\frac{\mathrm{d}F}{\mathrm{d}t}-\nabla\cdot\left(p_{s}F\boldsymbol{v}\right) \end{aligned}

所以可以根据Stokes公式

g^{-1}\iiint\frac{\partial}{\partial t}(p_{s}F)\mathrm{d}s\mathrm{d}\sigma =-g^{-1}\iiint \nabla\cdot\left(p_{s}F\boldsymbol{v}\right)\mathrm{d}s\mathrm{d}\sigma=0


二、自由大气中的运动和熵

1.位温

处于(p,T)空气质点经过绝热过程到达某一标准状态(p_{0},T_{0})时,T_{0}就叫做位温。p_{0}可以取1000\mathrm{hPa},位温用\theta表示。

\theta=T\left(\frac{p_{0}}{p}\right)^{R/C_{p}}

位温\theta也是一个保守属性,其证明如下:

\begin{aligned} &C_{p}\frac{\mathrm{d}T}{\mathrm{d}t}-\alpha\frac{\mathrm{d}p}{\mathrm{d}t}=0\\ &C_{p}\mathrm{d}T-\frac{RT}{p}\mathrm{d}p=0 \end{aligned}

从状态(p_{0},T_{0})到状态(p,T),有

\begin{aligned} &\frac{T}{T_{0}}=\left(\frac{p}{p_{0}}\right)^{R/C_{p}}\\ &\theta=T_{0}=T\left(\frac{p_{0}}{p}\right)^{R/C_{p}} \end{aligned}

两边取对数并求微分

\frac{1}{\theta}\mathrm{d}\theta=\frac{1}{T}\mathrm{d}T-\frac{R}{pC_{p}}\mathrm{d}p=\frac{1}{C_{p}T}\left[C_{p}\mathrm{d}T-\frac{RT}{p}\mathrm{d}p\right]=0

2.熵

熵的定义

热力学第二定律定义的状态函数S,物理意义是体系混乱程度的度量

  1. 不可逆绝热过程:S
  2. 可逆绝热过程:S不变

理想气体满足

\begin{aligned} &\frac{\mathrm{d}S}{\mathrm{d}t}=\frac{1}{T}\frac{\mathrm{d}Q}{\mathrm{d}t} =\frac{C_{p}}{T}\frac{\mathrm{d}T}{\mathrm{d}t}-\frac{R}{p}\frac{\mathrm{d}p}{\mathrm{d}t}\\ \Rightarrow& C_{p}\frac{\mathrm{d} \ln_{}{T}}{\mathrm{d}t}-R\frac{\mathrm{d} \ln_{}{p}}{\mathrm{d}t} =\frac{\mathrm{d}}{\mathrm{d}t}\left(C_{p}\ln_{}{\frac{T}{p^{R/C_{p}}}}\right) \end{aligned}

(p_{0},T_{0})(p,T)进行积分,并取标准状态(p_{0},T_{0})时的熵S_{0}为0

S-S_{0}=\int_{T_{0}}^{T} C_{p}\ln_{}{\frac{T}{p^{R/C_{p}}}} \mathrm{d}T

S=C_{p}\ln_{}{\left[\frac{T}{T_{0}}\left(\frac{p_{0}}{p}\right)^{R/C_{p}}\right]} =C_{p}\ln_{}{\frac{\theta}{T_{0}}}

等熵面S物质面,等熵面坐标(x,y,s,t)(局地平面坐标系或标准坐标系)在静力平衡下满足下面的运动方程,即等熵面坐标的静力平衡运动方程

\left\{\begin{array} {lr} \frac{\mathrm{d} u}{\mathrm{d} t}=-\frac{\partial F}{\partial x }+fv \\ \frac{\mathrm{d} v}{\mathrm{d} t}=-\frac{\partial F}{\partial y }-fu \\ \frac{\mathrm{d} u}{\mathrm{d} x}+\frac{\mathrm{d} v}{\mathrm{d} y}+\frac{\mathrm{d}}{\mathrm{d} t} \left[\ln_{}{\left(-\frac{\partial p}{\partial s}\right)}\right]=0 \end{array}\right.

运动方程中的F蒙哥马利函数,其定义如下

F=C_{p}T+\phi

由于

\dot{S}=\frac{1}{T}\frac{\mathrm{d}Q}{\mathrm{d}t}=0

S也是一个保守属性


三、位势涡度

1.正压大气

均匀不可压缩正压大气,采用潜水模型

涡度和散度的表达式为

\left\{\begin{array} {lr} \zeta=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} \\ D=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} \end{array}\right.

代入潜水模型,得到正压大气潜水模型运动方程

\left\{\begin{array} {lr} \frac{\mathrm{d} u}{\mathrm{d} t}=-g\frac{\partial h}{\partial x }+fv \quad (1)\\ \frac{\mathrm{d} v}{\mathrm{d} t}=-g\frac{\partial h}{\partial y }-fu \quad (2)\\ \frac{\mathrm{d} h}{\mathrm{d} t}=h\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \quad (3) \end{array}\right.

将运动方程做涡度运算\frac{\partial}{\partial x}(2)-\frac{\partial}{\partial y}(1),然后再代入(3),其中

\begin{aligned} (1):&\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=-g\frac{\partial h}{\partial x}+fv\\ (2):&\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}=-g\frac{\partial h}{\partial y}-fu \end{aligned}

于是有

\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\zeta+f}{h}\right)=0

于是正压大气的位涡度

\varOmega_{0}=\frac{\zeta+f}{h}

因此正压大气位涡度\varOmega_{0}保守属性

2.斜压大气

斜压大气潜水模型运动方程

\left\{\begin{array} {lr} \frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}=-\frac{\partial F}{\partial x}+fv \quad (1)\\ \frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}=-\frac{\partial F}{\partial y}-fu \quad (2)\\ \frac{\mathrm{d}}{\mathrm{d} t}\left[\ln_{}{\left(-\frac{\partial p}{\partial s}\right)}\right]+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \quad (3) \end{array}\right.

做涡度运算\frac{\partial}{\partial x}(2)-\frac{\partial}{\partial y}(1),可得

\begin{aligned} &\frac{\mathrm{d}}{\mathrm{d}t}\left[\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+f\right] =-\left[\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+f\right]\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \\ &\frac{\mathrm{d}}{\mathrm{d}t} \ln_{}{\left[\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+f\right]} =-\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \\ &\frac{\mathrm{d}}{\mathrm{d}t} \ln_{}{\left[\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+f\right]} =\frac{\mathrm{d}}{\mathrm{d}t}\left[\ln_{}{\left(-\frac{\partial p}{\partial s}\right)}\right] \\ &\frac{\mathrm{d}}{\mathrm{d}t}\ln_{}{\frac{\left[\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+f\right]}{\left(-\frac{\partial p}{\partial s}\right)}}=0 \end{aligned}

定义斜压大气位涡度

{\color{red}\varOmega_{\vartheta}}=\frac{\left[\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)+f\right]}{\left(-\frac{\partial p}{\partial s}\right)} =\frac{\zeta+f}{\left(-\frac{\partial p}{\partial s}\right)}

因此斜压大气位涡度\varOmega_{\vartheta}保守属性


四、涡度和散度、能量间的相互作用

1.不同角度看待能量间相互作用

天气系统(大尺度):动能(速度、风场)主要在涡旋或者旋转部分,辐散辐合部分一般很小,但是却是在能量转换当中十分重要

(1)从热力学方面看

C_{v}\frac{\mathrm{d}T}{\mathrm{d}t}+p\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{1}{\rho}\right) =0

内能只能转化成气体膨胀或压缩运动

(2)从连续方程看

\frac{\mathrm{d}\rho}{\mathrm{d}t}+\rho\nabla\cdot\boldsymbol{v}=0

这表明内能和散度是相通的

标准坐标下

\boldsymbol{v}=u\boldsymbol{i}+v\boldsymbol{j}

引入速度势\chi和流函数\psi,分别得到涡旋动能和散度动能

2.Helmholtz分解定理

速度分解为只具有涡度场和只具有散度场的两部分Helmholtz分解

\left\{\begin{array} {lr} \boldsymbol{v}=\nabla_{2}\chi+\boldsymbol{k}\times\nabla_{2}\psi \\ u=\frac{\partial \chi}{\partial x}-\frac{\partial \psi}{\partial y}, \quad v=\frac{\partial \chi}{\partial y}+\frac{\partial \psi}{\partial x} \end{array}\right.

涡度\varOmega和散度D分别为

\varOmega=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y} =\Delta\psi, \quad D=D_{2}(\boldsymbol{v})=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\Delta\chi

其中$\Delta$为平面拉普拉斯算子,也可写作$\Delta_{2}$

\begin{aligned} e_{k}&=\frac{u^2+v^2}{2}=\frac{e_{\psi}+e_{\chi}}{2}+J\left (\psi,\chi \right )\\ &=\frac{1}{2}\left ( \left | \nabla \psi \right | ^{2} +\left | \nabla \chi \right | ^{2} \right ) +J\left (\psi,\chi \right ) \end{aligned}

J\left (\psi,\chi \right )表示雅可比算子

J\left (\psi,\chi \right )\equiv \frac{\partial \psi}{\partial x}\frac{\partial \chi}{\partial y}-\frac{\partial \chi}{\partial x}\frac{\partial \psi}{\partial y}

引入记号

\begin{aligned} e_{\psi}&=\frac{1}{2}\left[\left(\frac{\partial \psi}{\partial x}\right)^2+\left(\frac{\partial \psi}{\partial y}\right)^2\right] =\frac{1}{2}\left | \nabla \psi \right | ^{2} \\ e_{\chi}&=\frac{1}{2}\left[\left(\frac{\partial \chi}{\partial x}\right)^2+\left(\frac{\partial \chi}{\partial y}\right)^2\right] =\frac{1}{2}\left | \nabla \chi \right | ^{2} \\ E_{\psi}&=\iiint_{0}^{1}g^{-1}p_{s}e_{\psi}\mathrm{d}\zeta\mathrm{d}x\mathrm{d}y\\ E_{\chi}&=\iiint_{0}^{1}g^{-1}p_{s}e_{\chi}\mathrm{d}\zeta\mathrm{d}x\mathrm{d}y \end{aligned}

3.整层无辐散自由大气中能量转换规律

散度不为0的情形下,整层无辐散大气能量满足如下规律:

  • 内能和动能转换的必要条件:D(\boldsymbol{v})\neq0
  • D(\boldsymbol{v})\neq0,内能和散度场动能间可相互转换
  • D(\boldsymbol{v})\neq0,由于科氏力和非线性作用,涡旋场和散度可有动能转换
  • 内能和涡旋场动能间的转换必须以散度为中介

参考文献

主要内容来自任保华教授所授课的《高等大气动力学》。

参考的教材

【1】《数值天气预报的数学物理基础》. 第一卷/曾庆存著. —北京:科学出版社,2019.4

【2】《大气动力学原理》.(日)小仓义光著;黄荣辉,译. —北京:科学出版社,1981

《数值天气预报的数学物理基础》有很多偏数学原理的推导过程,为了使得对高大动有更加简洁的理解和清晰的框架,可能会省去一些推导过程,而着重强调其物理情形和理解。对于这一部分有更加深刻学习要求的同学可以研读原著

前置知识教材

主要包括动力气象学的相关内容(后续作者也会更新动力气象及其他大气专业课笔记^_^)

【3】《动力气象学引论》:原书第五版/(美)詹姆斯·霍顿(James R. Holton),(美)格雷戈瑞·哈金(Gregory J.Hakim)著;段明铿,王文,刘毅庭译. —北京:电子工业出版社,2019.6

  • 19
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值