正交db小波 图像处理 matlab,基于matlab小波工具箱的数字图像处理及小波分析

41528d3028836879cd698677c3999917.gif基于matlab小波工具箱的数字图像处理及小波分析

基于 Matlab 小波工具箱的数字图像处理摘要:小波分析在图像处理中有非常重要的应用,包括图像压缩、去噪、分解和增强等。运用多分辨率分析可以将信号分解为多尺度信息,每个尺度下都有该分辨率下的“概貌”信息和细节。小波分析是傅里叶分析思想方法的发展与延拓,它不是时间-频率域上的分析,而是时间-尺度域变换,因此在图像处理上具有明显的优势。同时合适小波函数也就成为小波分析中最基本的问题。关键字:小波分析,多分辨分析,小波函数,图像处理一、 多分辨率分析多分辨分析,也称为多尺度分析,即在不同尺度下对事物进行分析 [1]。我们都知道,人的眼睛观察物体时,如果距离物体比较远,也就是说尺度比较大,则视野宽、分辨能力低,只能观察事物的概貌而看不清局部细节。若距离物体较近,那么视野就窄而分辨能力高,可以观察到事物的局部细节,却无法概览全貌。因此,若想要知道物体的整体轮廓又要看清其局部细节,就必须选择不同的距离对物体进行观察。同理,信号分析也是如此,在大尺度上分析信号的全貌,在小尺度上分析信号的细节,那么就需要把信号分解成某一尺度下的“概览”和该尺度下的细节。1.1 信号的近似分解给定一个连续信号 ,我们可用不同的基函数并在不同的分辨率水平上对它作)(tx近似 [2]。令(1.1)10()tt其 他显然, 的整数位移相互之间是正交的,即)(t(1.2) (),(),tktkkZ这样,由 的整数位移 就构成了一组正交基。设空间 由这一组正交基)(t 0V所构成,这样, 在空间 中的投影(记作 )可表为:x0V)(0txP(1.3))()( ,tkakatxP0式中 , 是基 的权函数, 可以看作是 在 中的)(),0ktka0,0k )(0ttx0近似。 , 如图 1.1(a)所示。 是离散序列,如图 1.1(b)所示。(txP)(0()Pxt()xt 0()ak(a) (b) )(0txP)(ka0图 1.1令 (1.4))()(/, t2tjjkj 是由 作二进制伸缩及整数位移所产生的函数系列,显然, 和 是正)(t )(,tkj)(,tkj交的。将 作二倍的扩展后得 ,由 作整数倍位移所产生的函数组当然也是)2(t)(t两两正交的(对整数 ) ,它们也构成了一组正交基。k(1.5)Zkttk ),2()(1/,1我们称由这一组基形成的空间为 ,记信号 在 中的投影为 ,则VxV)(1txP(1.6)kk11tatxP)()(,式中 为加权系数。 如图 1.2(a)所示。 仍为离散序列,如图 1.2(b))(ka1所示。1Pxt()t1()ak(a) (b) )(1txP)(ka1图 1.2若如此继续下去,在 的基础上,我们可得到在不同尺度 下通过作整数位移)(t j所得到一组组的正交基,它们所构成的空间是 。用这样的正交基对 作近似,ZjV, )(tx就可得到 在 中的投影 。又有)(txjVtxPj(1.7) )1()2(t再比较该图的 1.1(a)和 1.2(a),显然图 1.1(a)对 的近似要优于图 1.2(a)对 的x)(tx近似,也即分辨率高。当 时, 中的每一个函数都变得无限窄,即有j)(,tkj(1.8))()(txtPjj而当 ,那么 中的每一个函数都变成无穷宽,对 的近似误差也越j)(,tkj )(tx大。低分辨率的基函数 可由高一级分辨率的基函数 所决定。从12 0j空间上来讲,低分辨率的空间 应包含在高分辨率的空间 中,但是,毕竟 不等于V0VV,二者之间有误差。这一误差是由 和 的宽度不同而产生,因此,1V)(kt)2(1kt这一差别应是一些“细节”信号,我们记之为 。这样有:1xD(1.9))()(0ttPtx另设一基函数 ,)(t(1.10)112()0tt其 他显然, 的整数位移也是正交的,进一步,其在不同尺度下的位移,即)(t,也是正交的,同时, 和 的整数位移之间也是正交的,即Zkjtj,)(,)(tt(1.11)Zk0kt  ,,( 又 和 之间有如下关系:)(t(1.12) 2/)]([)(ttt及(1.13)/)]([)12(tt记 张成的空间为 , 所张成的空间为 ,依次类推,)(kt0Wk 1W张成的空间为 。记 在空间 中的投影为 ,在 中的投影为),kj j)(tx0)txD(0,它们均可表为相应基函数 的线性组合,即)txD1 )(,tkj(1.14))(,tkdD00(1.15))(,txk1k1式中 , 是 , 尺度下的加权系数,它们均是离散序列。 ,)(kd01j )txD(0分别如图 1.3(a)和(b)所示, , 分别如图(c)和(d)所示。)(0 )t1d0()Dxt 0()dxk(a) (b)0()dxt 1()dxk(c) (d)不难发现, 与 相加,即得 ,由空间表示,即是)(1txP)(1tD)(0txP(1.16)1WV把上述概念加以推广,显然有(1.17) 01211jjjV W  并且(1.18) 1210jjVV这样,给定不同的分辨率水平 ,我们可得到 在该分辨率水平上的近似j)(tx和 ,由于 是低通信号,因此 反映了 的低通成份,我们称其)(txPj )(tDj )(tPj t为 的“概貌” 。由于 是由 边缘得到的离散序列,所以 也应是kaj )(txj )(kaj在尺度 下的概貌,或称离散近似。同理,由于 是带通信号,因此 反tj )(t)(txDj映的是的高频成份,或称为 的“细节” ,而 是 的离散细节。)(tkdjx1.2 多分辨分析的定义Mallat 给出了多分辩率分析的定义 [3]:设 是 空间中的一个闭合子空间,如果它们满足如下六个性质,则jVZ)(2RL说明 , 是一个多分辨率近似。这六个性质是:1.平移不变性: ,若 则 (1.21)2),(ZkjjVtx)(jjVkt)2(2.单调性: , ,即 (1.22)1jjV 110jj3.伸缩性: ,若 ,则 (1.23)jjtx)()2(jtx4.:渐进完全性: (1.24)0jjjVLim5.逼近性: (1.25))((2RLClosureVijjjj6.Riesz 基存在性:存在一个函数 ,使得 构成 的t0/2{()}jkztjVRiesz 基

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值