matlab曲面的最小值,MATLAB最小二乘法拟合曲面

本文介绍了如何使用MATLAB的最小二乘法拟合高次曲面,分析了常见源码存在的问题,并提供了解决方案。通过调用MATLAB的cftool进行拟合,然后生成源代码,可以方便地获取拟合方程的系数。
摘要由CSDN通过智能技术生成

MATLAB最小二乘法拟合高次曲面

前言

1. **函数文件源码** :

2. **解决上述问题**

3. **生成源代码**

前言

引用来引用去实在没意思(http://blog.sina.com.cn/s/blog_8702e2b60102x4qg.html),看到的很多最小二乘法拟合曲面方程基本都是基于这样的一个方程,代码也没有什么大的改动。只是应用的时候确实存在很多问题,不太适合实际的问题。

简单分析一下上述参考的源码存在的一些问题。

1. 函数文件源码 :

function [a0, a1, a2, a3, a4, a5] = least_square_surface(x,y,z)

% 初始化矩阵

A = zeros(6,6);

B = zeros(6,1);

% 矩阵赋值(根据最小二乘法对最小二乘矩阵赋值)

for i=1:length(x)

for j = length(y)

A(1,1) = 1+A(1,1);

A(1,2) = x(i,j)+A(1,2);

A(1,3) = y(i,j)+A(1,3);

A(1,4) = x(i,j)^2+A(1,4);

A(1,5) = x(i,j)*y(i,j)+A(1,5);

A(1,6) = y(i,j)^2+A(1,6);

A(2,1) = x(i,j)+A(2,1);

A(2,2) = x(i,j)^2+A(2,2);

A(2,3) = x(i,j)*y(i,j)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值