定积分计算体系详谈内容综述
- 基本方法
- 基本性质
- 基本结论与技巧
- 基本题型(每个类型的特征+解题要点)
- 如何用好题型问题简单谈谈。
- 本次文稿仅作为梳理问题,基于不定积分计算的前提下,希望能给人以帮助,在这一部分就统考的数学而言,个人建议可以借助题型分类,从而可以根据不同类型的题干本身的特征,快速定位题型,进而锁定方法方向,更有针对性解决问题。
要想定积分计算的快,准,易,除不定积分基础外,应当把该背的公式和方法梳理清楚。

定积分计算体系
基本方法
- 2.1 牛顿莱布尼茨公式

图片-02 牛顿莱布尼茨公式
前提条件请自己查。本来原函数存在,与定积分是否存在,但牛顿莱布尼茨公式建立起了两者的关系,给出了:用原函数求定积分的方法。 因此,不定积分计算必然是基础。
- 公式两步走:1.算原函数(不定积分);2.代上下限
- 2.2 定积分的换元法(注意条件,涉及到个别题开根号之后取值正负)

图-03 摘选自《复习指南》
定积分换元法(3换步骤):1.换元 x=g(t);2.换微元:dx=dg(t)=g'(t)dt; 3.换上下限:x=a,则t=m;x=b,则t=n[一一对应]
- 相比不定积分换元法而言,定积分换元不需要回代,只用把对应的上下限值改掉即可。

图-04 摘选自《同济教材高数》
- 简化定积分换元手法:先凑微分,再平衡系数,将来换微元的时候就不用求导了。

图-05 简化定积分换元的一个手法
- 2.3 定积分的分布积分法
