围成一圈的排列组合问题_行测技巧:排列组合之“环形排列”问题

本文介绍了公考中排列组合问题的解决方法,特别是针对“环形排列”题型进行了讲解。通过两个例子,阐述了当个体围成一圈时,由于没有起点和终点的区别,排列数会有所不同。例如,五个小朋友围成一圈做游戏的站队情况为24种,六对夫妻坐在一起的坐法为7680种。学习这些技巧有助于考生更好地应对排列组合的难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:行测技巧:排列组合之“环形排列”问题

在公考学习备考中排列组合一直是大家比较头疼的题目,很多同学在高中时就对这种题目望而却步,其实排列组合题目虽然比较难,但是这类题目却可以总结出多种不同的题型,对于不同的题型我们可以针对性的采取不同的解题思路、解题方法。今天呢,中公教育就带着大家一起看一下其中的一种题型——环形排列。

例1.五个小朋友手拉着手围成一个圆圈做游戏,共有多少种不同的站队情况?

A.120 B.24 C.90 D.60

85160f16dd7c3203a65273084f952cc7.png

这里我们要注意的一点是5个人站成一排结果是120,而现在我们是围成一个圈,那这个题目怎么办呢。这里我们想一下,现在有五个空位围成一个圈,然后有甲、乙、丙、丁、戊五个小朋友依次坐到座位上,首先甲坐到五个座位中的一个。由于是围成一个圈的五个座位,因此不论甲坐在哪里,由于没有方向,没有参照物,甲其实都只有1种坐法。接着,我们让乙来选座位,由于有甲的存在,乙有了参照物,那么乙其实可以在剩余的四个座位挑一个,那就有4种选择。接下来丙,同样由于有了甲、乙作为参照物,丙可以在剩下的三个座位挑一个,有3种选择。丁就可以在剩余的两个挑一个,2种选择。最后只剩下一个座位,戊只能有1种选择。而由于甲选完之后并没有完成“围成一个圈”这件事,因此是分步,同样乙、丙、丁、戊选完之后也没有完成,同样是分步。因此用的是乘法,也就是1 4 3 2 1=24,选择的是B选项。

8845419862670ddd29163c2ceb0759c8.png

例2.六对夫妻坐在圆桌旁边,每一对夫妻都必须坐在一起,问一共有多少种坐法?

A.7680 B.120 C.240 D.7200

fd64051c5354110a83b4fa93adb5aec7.png

这就是我们排列组合问题中的环形排列问题,通过这次学习,希望同学们对于排列组合不再那么畏惧,同时能够熟练的掌握这种方法,攻克排列组合这一难题!返回搜狐,查看更多

责任编辑:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值