方向导数是对任意方向的导数,动态效果图:https://www.geogebra.org/m/MsqnxRqc,而偏导数是以x切面或y切面上的导数
假设z=f(x,y)为一曲面

求u方向的方向导数斜率,可做一个通过P点平行于u方向的垂直平面,如下图所示,该垂直平面与曲面f(x,y)相交于曲线C,曲面在点
备注:如下图所示,之所以用极坐标参数方程表示直线,是因为参数方程可以让直线在360度的任意方向上移动,而方向导数就是研究曲面在不同方向上的切线斜率

所以P与Q之间的距离为:
当
在求方向导数使用定义求解之外,还可以使用偏微分来简化计算
因为:
又因为函数z=f(x,y)可微,所以
由方向导数

梯度概念理解:如下图所示,在p点放一个热源的等温线,则热源的辐射从里到外为10°、20°、30°、40°,若一个小蚂蚁在o点,要最快逃离热源,应该往oj方向逃离,若往om方向逃离则热源的变化率为0,即一直都是20°,也就是说蚂蚁一旦确定了某个逃离方向(0°,90°)方向角逃离,只要一直沿着该方向一直走,就是最快的热源降低的方向

同理,一旦确定了方向导数的方向,沿着方向导数的方向就是梯度变化最快的方向,如下图所示,只要沿着PQ的方向角移动,则梯度下降得最快,就是最速降曲线

根据方向导数公式:
是单位向量
本文探讨方向导数的概念,通过动态示意图解释曲面上不同方向的切线斜率。介绍了如何求解方向导数,特别是使用偏微分简化计算的方法。同时,文章阐述了梯度的物理意义,比如热源逃离问题,表明沿着梯度方向是变化最快的方向,是寻找最速降线的关键。此外,还提到了单位向量在计算中的作用。
441

被折叠的 条评论
为什么被折叠?



