x轴z轴代表的方向图片_方向导数与梯度

本文探讨方向导数的概念,通过动态示意图解释曲面上不同方向的切线斜率。介绍了如何求解方向导数,特别是使用偏微分简化计算的方法。同时,文章阐述了梯度的物理意义,比如热源逃离问题,表明沿着梯度方向是变化最快的方向,是寻找最速降线的关键。此外,还提到了单位向量在计算中的作用。

方向导数是对任意方向的导数,动态效果图:https://www.geogebra.org/m/MsqnxRqc,而偏导数是以x切面或y切面上的导数

假设z=f(x,y)为一曲面

为f定义内的一个点,如下图所示,设u为单位向量u=icosθ+jsinθ,并且平行于L

e94c27006235cef595f6ab0ecc92b3dd.png

求u方向的方向导数斜率,可做一个通过P点平行于u方向的垂直平面,如下图所示,该垂直平面与曲面f(x,y)相交于曲线C,曲面在点

上沿着u方向移动到Q点(x,y,f(x,y)),连接点
与点Q(x,y)的直线方程用参数方程表示为:
( t为任意实数,Q(x,y)是直线L上任意一点)

备注:如下图所示,之所以用极坐标参数方程表示直线,是因为参数方程可以让直线在360度的任意方向上移动,而方向导数就是研究曲面在不同方向上的切线斜率

d1ab11cdca475729d927eb4b3a5edfa5.png

所以P与Q之间的距离为:

连接点
点的割线斜率可以写成

时,可以得到方向导数的定义
如果极限值存在,则沿着
方向的方向导数为该极值。

在求方向导数使用定义求解之外,还可以使用偏微分来简化计算

因为:

又因为函数z=f(x,y)可微,所以

由方向导数

公式可知是一个向量的形式表达,是在x轴方向上的变化分量与在y轴方向上的变化分量进行向量的相加,如下图所示

982f368da866502f857d27a1625ee741.png

梯度概念理解:如下图所示,在p点放一个热源的等温线,则热源的辐射从里到外为10°、20°、30°、40°,若一个小蚂蚁在o点,要最快逃离热源,应该往oj方向逃离,若往om方向逃离则热源的变化率为0,即一直都是20°,也就是说蚂蚁一旦确定了某个逃离方向(0°,90°)方向角逃离,只要一直沿着该方向一直走,就是最快的热源降低的方向

a3d19b50f16734ae06dc45f6e220eae4.png

同理,一旦确定了方向导数的方向,沿着方向导数的方向就是梯度变化最快的方向,如下图所示,只要沿着PQ的方向角移动,则梯度下降得最快,就是最速降曲线

da7e83c0e9c6d0e8f54b232c161c89d2.png

根据方向导数公式:

可以写成向量点乘的形式:
令:
因为

是单位向量

所以
当θ=0时, cosθ=1,所以
最大值的方向为
即沿着方向导数方向梯度变化最快

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值