1, x轴、y轴和z轴分别代表的是什么?
空间任意选定一点O,过点O作三条互相垂直的数轴Ox,Oy,Oz,它们都以O为原点且具有相同的长度单位。这三条轴分别称作x轴(横轴),y轴(纵轴),z轴(竖轴),统称为坐标轴。它们的正方向符合右手规则,即以右手握住z轴,当右手的四个手指x轴的正向以Π/2角度转向y轴正向时,大拇指的指向就是z轴的正向。这样就构成了一个空间直角坐标系,称为空间直角坐标系O-xyz。定点O称为该坐标系的原点。与之相对应的是左手空间直角坐标系。取定空间直角坐标系O-xyz后,就可以建立空间的点与一个有序数组之间的一一对应关系。设点M为空间的一点,过点M分别作垂直于x轴、y轴和z轴的平面。设三个平面与x轴、y轴和z轴的交点依次为P、Q、R,点P、Q、R分别称为点M在x轴、y轴和z轴上的投影。又设点P、Q、R在x轴、y轴和z轴上的坐标依次为x、y、z,于是点M确定了一个有序数组x,y,z。参考资料来源:搜狗百科-空间直角坐标系
2, x y z轴指哪些方向
空间向量平行公式即共线公式:两个空间向量a,b向量(b向量不等于0),a∥b的充要条件是存在唯一的实数λ,使a=λb共线向量定理定理1⊿ABC中,点D在直线BC上的充要条件是证明:有推论5 即可证得。定理2⊿ABC中,点D在直线BC上的充要条件是证明:由定理1 即可得证。扩展资料:共线向量基本定理证明:1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义知