
前言

最近2021考研硕果计划的小伙伴正在如火如荼的进行概率论的学习。有些小伙伴被各种排列组合还有各种证明和推导搞的焦头烂额。比起统计学、回归分析、时序、多元统计等,概率论算是比较独特的一门学科了。独特就独特在,它的灵活性很强。即使你的公式背诵的很熟很熟,但遇见一些新的题目,可能就傻眼了。其实这部分内容和数学的学习方法非常类似,通过多做题练习,进而熟悉熟知相关知识。
但,我们除了学习知识之外,有没有想过,老师怎么就偏爱概率论了呢?概率论这门学科的存在意义是什么?这里,我节选一下全新升级的21硕果计划的部分内容,让大家更清晰一些:
还有同学说,我学习概率论到底能有何用呢?难道就是为了应付考试么?我费心巴力的学习统计,就是想以后从事大数据、人工智能啊,学这些破公式有啥用?!……而今天呢,我们以大名鼎鼎的大家也都熟悉的贝叶斯公式为例,船长学长带你好好认识一下,我们学习概率,学习统计到底能在AI和大数据中体现什么样的价值!

贝叶斯公式

贝叶斯公式大家熟记于心了吧。
这里的事件A和B,看似是两个普通的符号,但是,如果你结合到实际场景中去,它的价值就体现了。
现在最火的科技是什么?AI人工智能!AI中很火的一个场景或者工具是什么?是人脸识别!大家的手机,现在几乎是全面屏(什么挖孔屏、刘海屏等),人脸识别技术也借此机会大放异彩!苹果公司发布的最新款iPhone 11 抛弃了指纹识别,采用了基于3D深度的人脸识别技术。今天,学长就带你领略一下,我们的概率知识在人脸识别中的应用。
在人脸识别中,我们知道,人脸识别有两个大方向:
Face Verification,判断两张人脸是否为同一个人。
Face Identification,从一个人脸库中找到给定的这张人脸对应的身份。
本文要重点介绍的Joint Bayesian 就是用来实现第一个(face verification)功能的。
总结
通过上面的例子,相信大家能体会到概率论或者其他统计的知识(包括矩阵求解,EM算法等)在实际生活中的应用。统计本来就来源于生活,不是凭空创造的,是一个工具型学科,只有结合了实际的业务才能迸发出强劲的动力。现在大家虽然学的枯燥无味,但是,等你夯实基础了,在加上你的灵活性,更多地可能等待大家的创新与实践!所以,加油吧!之前说“学好数理化,走遍天下都不怕”,今天我们作为统计人可以骄傲说:“学好统计算法,人工智能看我的”。
最后,并不是给大家压力。作为《教程-概率论》章程,我们大概花费50天的时间去攻坚克难,绝非仅仅看起来就10次课而已,与大家学得数学三的概率论也是侧重点不同。硕果计划倡导的是陪伴引导式的辅训计划,按照课程的难度和各知识模块的重要度,科学的划分了相关知识点,一般是一周一次课,大家秉着“预习-听课-消化-整理笔记-做题”的顺序进行复习,这背后的努力是太多同学看不到的。后面还有很多挑战性的内容等待大家,如果错过了这个阶段,势必在损失复习质量的前提下才所谓的学习完。过了这个阶段,大家已经能力分层了,这个差距几乎是不可逆的。
努力这东西,差距一天觉得无所谓,我们保守的以硕果计划比你自己复习多0.01的提升度而言,但日积月累,差距的就是很多倍了……追逐梦想的年轻人,乘风破浪吧!