plor 回归的r方_【回归分析】R、R平方与调整后的R平方

回归分析中,R表示相关系数,衡量变量间相关程度;R²是判定系数,评估模型解释程度;调整后的R²考虑了样本量和自变量个数,更准确反映模型拟合效果。在多元回归中,调整后的R²小于0.5可能表明模型存在问题或遗漏自变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原标题:【回归分析】R、R平方与调整后的R平方

f901e78f777845e1fa2d71fcbc470773.png

回归分析,是对两个或两个以上变量之间的因果关系进行定量研究的一种统计分析方法。回归分析,也是我们进行需求预测常用的一种因果建模方法。

我们做回归分析时,离不开一个字母“R”。本文向大家介绍R、R平方与调整后的R平方的概念、在回归分析中作用以及计算方法。

一、R,相关系数。

顾名思义,相关系数,是衡量两个变量之间相关程度的系数,是判定变量之间线性相关性的一个相对指标。相关系数用字母R表示,最早由英国统计学家卡尔·皮尔逊设计并提出。

bf03e6d34da536915286ae183ae53063.png

相关系数R取值在±1之间,当R为0时,表示两个变量绝对不相关;当R大于0时,两个变量正相关,即你增加我也增加,你减少我也减少;当R小于0时,两个变量负相关,即你增加我减少,你减少我增加;当R等于1或-1时,表示两个变量绝对相关。

相关系数R越接近于±1,两个变量之间相关性越强。一般认为:当R值为±0.7或更大时,两个变量高度相关,即强相关;当

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值