matlab有限域多项式除法_分圆多项式:一些杂货(1)

e74ce69c6a0650fc837278c07097099b.png

上篇文章里已经说了那份分圆多项式的讲义,今天有机会就稍微翻译一下。

引入:

定义

此为次数为n的分圆多项式。

几个例子:

可以看出,分圆多项式

上次数为
的不可约多项式。这也就是说,
上的
(表示最大公因数)次代数元,而对应的分圆多项式也就是它的极小多项式。

这个事实的证明(尤其是后半段)并非显然,我们把它留到后面。

但是我们确实有一个常见的练习:

是不可约多项式。(爱森斯坦判别法)

接下来是几个常见的结论:

利用此等式,我们可以证明

是整系数多项式。

(熟悉抽象代数的读者会发现这个论证非常自然)

利用归纳,则由归纳假设易知

为整系数多项式。在

上我们有整除关系:

将这个关系用带余除法倒到

上即可。

这是上一个等式的莫比乌斯反演的结果。

附注:讲义里还有一个关于莫比乌斯函数的等价定义:

这个看似可以用韦达定理直接推出来,实际上并不能。

  • 是对称多项式。

这个将共轭复数配对相乘即得。换句话说:

容易验证

  • 如果
    ,我们有
    ;如果
    .

感觉这个和扩域有一些联系。当然简单的来说就是数一下根的多少就好了。

特别的,我们有

  • 如果
    ,则在
    上我们有:

这是因为若不然,我们就有某个多项式

使得
,而利用形式导数我们知道
上无重根。

特别的,考察一次因式

,我们知道:

则不可能有:
  • 如果
    ,则我们有:

证明:归纳即可。注意到我们此时有

  • 推论:模p的原根存在。

证明:考虑

,由于
上分裂,故其因子
也分裂。

接下来我们考虑对于某个

的情况:
  • 如果
    ,且存在
    使得
    ,则此公因数为某个素数
    的幂次且
    ,(
    是整数)。

(幕间)

我们先介绍一个结论,这个结论的证明也很有意思,我是从舍友csc那里听到的:

  • 对于一个非常数的整系数多项式
    ,存在无穷多个素数,使得
    上有整数解。

证明:

,则我们知道

故我们有:

从而发散。

另一方面,假设只有有限个素数

,则我们知道:

从而有界,矛盾!

事实上取

就可以得到素数有无穷多个以及其结论的标准解析证明。
  • 现在我们取
    ,利用之前的结论(
    ),就可以得到有无穷多个模
    的素数了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值