matlab有限域多项式除法_高等代数教学笔记2:多项式 III

现在我们可以讨论因式分解理论中的最重要也是最困难的部分——不可约多项式. 同样, 我们需要对比整数情形的素数理论. 

素数

算术基本定理告诉我们, 素数在正整数的研究中的地位是非常重要的. 对素数的探索贯穿了数学发展的整个历程, 早在古希腊时期, 数学家 Euclid (欧几里得, 公元前 330–公元前 275) 就用一个绝妙的方法证明了如下结论. 问题 24 素数有无穷多个. 提示一下: 如果素数是有限多的, 把它们全乘起来再加 1, 看看得到的是素数还是合数.把 Euclid 的方法稍加调整就可以证明 问题 25 形如 4k + 3 的素数有无穷多个.

把 4k+3 的素数乘起来加1是不行的, 要做一点调整. 自然我们还会想到下面这个问题

问题 26 形如 4k + 1 的素数有无穷多个.这个证明要麻烦一点, 不过如果懂一点点群论就容易得多, 比如前文提到的 80d40cf69d2a8dbc68197b88faa2965f.png, 对于 p 为 4k + 3 型素数时, 80d40cf69d2a8dbc68197b88faa2965f.png 中的非零元在乘、除运算下都是封闭的, 甚至存在一个元素 ξ 使得其他非零元都形如 7854fb72447be7b1741c8c3d3bc5f925.png , 然后就很容易发现这个 80d40cf69d2a8dbc68197b88faa2965f.png中四次方为 1 的元素只有 1. 这是证明上述问题的关键.更一般地, Dirichlet (狄利克雷, 1805–1859) 证明了 定理 27 设 a,d 是互素的正整数, 则等差数列 a + kd (k ∈ Z) 中存在无穷多素数.这个结论要深刻的多, 证明的难度也很大, 需要分析学的工具.虽然我们知道素数有无穷多, 然而目前被发现的素数并不多, 因为, 随着数的增大, 判断一个数是否是素数越来越困难, 即使用超级计算机也要费时很久, 甚至几年、几十年也算不出结果, 这也是现代密码学的主要理论基础之一. 目前, 我们没有一个公式可以提供无穷多确定的素数, Fermat 曾经猜想: 对任意 n ∈ N,  9707121ee0fb8efc56250f64e107ebc0.png  都是素数. 可惜他猜错了. 目前寻找大素数的效率较高的方法似乎是寻找 Mersenne 素数  7bcfd4b572330252e96fe86c7da16990.png .

复系数不可约多项式

多项式情形的结果还是要比整数的好, 比如我们很容易得到无穷多个不可约多项式: 所有一次多项式都是不可约的. 不仅如此, 我们在某些情形还可以给出所有不可约多项式的分类. 在复数域情形, 我们需要利用如下的代数基本定理. 定理 28 次数大于 0 的复系数多项式都有复根.而多项式的根和一次因式是一一对应的, 这就意味着 问题 29 复系数不可约多项式都是一次的.在代数学范围内, 我们一般会首先考虑像复数域这样的数域, 因为其中非常数多项式都有根, 这会给我们带来很大的便利. 不过不太便利的是, 中学数学里复数讲的非常少甚至不讲, 而大学又假定这些都是中学讲过的, 于是就比较尴尬了. 更尴尬的是, 现在的高中数学课本干脆把映射都给砍了, 看来不把数学这棵大树砍成棺材板誓不罢休. 比如, 下面这个问题就可能让学生困扰. 问题 30 在复数域上分解 26b4c9db809944ac45836bf168b5f00d.png .问题本身不难, 需要三角函数的基本运算. 不过这个问题蕴含很多东西, 比如利用它可以得到如下结论, 实际上类似的结论非常多. 问题 31  600ad5b2eebb4af933a6941a1233b7d5.png 实系数不可约多项式 实数域和复数域相差不大, 我们常常可以利用复数域上的结果来处理实数域 上的问题, 比如我们马上要处理的实系数多项式问题. 首先注意到 问题 32 实系数多项式的 (非实) 复根是成对出现的, 即若 80834ca126cd970432f1ac78ae9a21b3.png 是 实系数多项式 f(x) 的根, 则 a1df1842b1a7099c6df07fe9e8c39e34.png 也是 f(x) 的根. 由此容易得到 问题 33 首一实 系数 不可约多项式有两类: (1) 一次多项式; (2)  05e862686803485e25dfad6ac6a235ab.png ,  其中   0e6f2d558ba9df066eeff5ab6245c440.png   且  ef428a4e05e81a0159776e14f8754f41.png . 于是我们可以考虑 问题 34  在实数域上分解 26b4c9db809944ac45836bf168b5f00d.png .比较有意思的问题是 问题 35ded56566a391b38c812fff07a3aee244.png , 且对任意实数 a 有  584c639930216881bc4da62b4c154784.png , 证明: 存在实系数多项式 g(x),h(x) 使得

382d68134af52f786c6943d414901cb7.png

有理系数不可约多项式

困难的是有理系数不可约多项式的分类, 这个问题目前还没有解决. 不过我们有很多方法得到一系列的不可约多项式. 这里需要把有理系数多项式转化为整系数多项式. 问题 36 (Eisenstein 判别法) 设

8acfb635e313790dfbe677a199c3e989.png

若有素数 p 使得

bcd6e64181805e143ad3c82d40fb12a3.png

则 f(x) 不可分解.

利用 Eisenstein 判别法, 我们很容易构造任意次数的不可约有理系数多项式.  问题37 对任意 078efdfa87c54e305b79a43543e4999c.pnga569dc2884f88149747f0d58d772c0bb.png  都是不可约的. 当然有时候不能直接利用 Eisenstein 判别法, 需要适当变形. 问题38 设 p 是素数, 则

d3a262f65cd64556888f1e4715368fb3.png

不可分解.这个问题只需要做一个简单的变量替换 x=y+1, 再利用素数的一个性质:

58922ab728597e261d5f8d2652d0defa.png

Eisenstein 判别法有好几个变化, 其中一个比较简单但是学生们又会比较糊涂的是判别法条件改为

47e774a202da81d9199ceabc27a71938.png

不过, Eisenstein 判别法不是万能的, 好多问题它也解决不了, 还需要想其他 办法. 比如 问题39 设 a1,a2,··· ,an是不同的整数, 证明: 

0c7baca837769782966f658ca28a8e8f.png

在 Q 上不可约.

当然, 素数与不可约多项式之间有更深刻的联系. 问题40 设素数

385e837504a93408df8d0621f599772f.png

ai∈ {0,1,··· ,9}, n > 0, 证明:

8e01c3d8e595e1cd08f36654b56c6ee1.png

在 Q 上不可约.这个问题比较难, 是一篇数学论文中的结果. 代数数多项式还可以用来研究数域. 称 α ∈ C 为代数数, 如果 α 是某个首一有理系数多项式的根; 称 α 为代数整数, 如果 α 是某个首一的整系数多项式的根. 问题41 设 α 为一个代数数, 记

866439c0f9bd48e0251b467854eb774f.png

证明:  4fc41c1c7d336b662989f1bd122b6347.png 中存 在唯一的次 数最低的首一多项式 f3b3767256dcf19b9bfb68a178b6d879.png , f3b3767256dcf19b9bfb68a178b6d879.png 不可约且4fc41c1c7d336b662989f1bd122b6347.png中其他多项式都是 f(x) 的倍式. 称 f3b3767256dcf19b9bfb68a178b6d879.png为 α 的最小多项式.前面我们考虑两个多项式的最大公因式时曾经考虑过一个集合

f3cbbdefdc9b821bf2633384c2d66380.png

这个集合与上面提到的4fc41c1c7d336b662989f1bd122b6347.png有非常类似的性质: 4fc41c1c7d336b662989f1bd122b6347.png的任何两个多项式的和在4fc41c1c7d336b662989f1bd122b6347.png中, 4fc41c1c7d336b662989f1bd122b6347.png中的任意多项式与 F[x] 中任何多项式相乘也在4fc41c1c7d336b662989f1bd122b6347.png中, 也就是4fc41c1c7d336b662989f1bd122b6347.png对于加法封闭, 对于乘法也封闭并且乘法具有某种吸收的性质.

继续讨论之前, 先做个小问题热热身. 问题42 (1) 设 α =√2 +√−1, 试验证 α 为代数数, 并求其最小多项式; (2) 试求 Q(√−1), Q(√−2), Q(√−3) 中的所有代数数和代数整数.  第 (2) 个问题实际上给出了代数整数在不同数域上的区别, 这里涉及虚二次域的代数整数环的结构.最小多项式是把数与多项式衔接的桥梁, 我们现在就可以用多项式理论来回答数域中遇到的问题. 问题43 设 α ∈ C 为 n 次不可约多项式 p(x) ∈ Q[x] 的根, 证明: 包含 α 的最小数域为

01e88c1bfdb069c7dfa940d5652f571c.png

这个结论堪称多项式和数域的绝妙结合, 它把我们之前考虑过的诸如包含d9640ea2be8255f661752547f15cb662.png的最小数域问题统一解决了! 它的证明过程也很精彩. 首先, 加法和减法的封闭性容易验证, 而乘法的封闭性用带余除法就能轻松处理, 最麻烦的是除法的封闭性, 而这本质上是要证明59a2db3441ac8d95f93b119d62299cda.png中的非零数的倒数也在 59a2db3441ac8d95f93b119d62299cda.png中 (为什么?). 注意到59a2db3441ac8d95f93b119d62299cda.png中每个非零数都可以写成 f(α) 的形式, 其中 f(x) 是次数小于 n 的多项式. 对于非零数 f(α), 如果倒数也在 59a2db3441ac8d95f93b119d62299cda.png中, 则也可以写成 u(α) 的形式, 也就是说要找到 u(x) 使得

u(α)f(α) = 1.

看到这里, 读者可能会联想起我们在前面做过好几次类似的事情, 比如在求同余方程 (组) 的解的时候, 解决问题的关键是 Bézout 定理, 这儿也是! 注意到 (f(x),p(x)) = 1, 自然有 u(x)f(x) + v(x)p(x) = 1. 给 x 赋值为 α 即可.上述证明值得好好回味, 除了巧妙运用 Bézout 定理, 更重要的是多项式函数的观点: 首先把 59a2db3441ac8d95f93b119d62299cda.png中的数都看作多项式的赋值, 最后一步也是赋值. 这实际上蕴含了对于多项式函数的另一个观点. 问题44 设 a ∈ F, 定义 F[x] 上的一个函数为

8a797473abf25e578a4b2650ce3ff097.png

这样的函数满足如下性质:

问题45 (1)  317c9085583393282cb00c85cd6e8883.png(2) b3fd54a74fc35188902e3fd9307d1c6c.png

       (3) 3582f8fc9f280a6a03340c95b0c6d048.png

可以看出这个函数的性质与多项式的求导的性质有点接近. 有兴趣的读者也可以去求多项式的满足上述性质的所有函数.我们把赋值的范围扩大一点, 不一定限制 a ∈ F, 而是任取 α ∈ C 做赋值, 自然的值域不再是 F, 而是复数域 C 比如, F =Q,   α 是一个 n 次有理系数不可约多项式 p(x) 的根, 这样就得到了一个映射

e353be02eb96cd610e8eb2a1a474a728.png

不过这个映射既不是单射, 也不是满射. 要想得到满射很容易, 把值域缩小成像集即可. 不知道什么是像集? 问你的中学老师去! 这儿的像集自然就是所有 f(α) 的集合, 也就是59a2db3441ac8d95f93b119d62299cda.png. 要想得到单射, 就需要把定义域缩小, 这一般来说不太好办. 不过我们的运气比较好, 只需考虑次数小于 n 的多项式全体0f61563eeb3e5de8f34e2ce260c3f8f1.png即可. 于是我们得到了一个一一对应

4e0844b603694aed734c5f68f7d84a8d.png

更神奇的是, 我们在前文定义了 0f61563eeb3e5de8f34e2ce260c3f8f1.png中的加、减、乘、除四则运算, 刚刚证明了 59a2db3441ac8d95f93b119d62299cda.png也有四则运算, 上述映射实际上是保持两个集合中的四则运算的! 换言之, 我们发现 0f61563eeb3e5de8f34e2ce260c3f8f1.png59a2db3441ac8d95f93b119d62299cda.png没有本质区别!这个发现也启发我们得到如下结论. 问题46 设 p(x) ∈ Q[x] 不可约, α,β ∈ C 是 p(x) 的两个根, 则存在 1-1对应

ae7a16501713cb539d32fa256d57379d.png

满足 ϕ(a + b) = ϕ(a) + ϕ(b), ϕ(ab) = ϕ(a)ϕ(b). 用行话来说, 这两个不同的数域是同构的.

这一结论在方程求根问题的解决上起到了关键作用.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值