matlab有限域多项式除法_代数Artin(十五): 域

——————————————— 完更撒花~(10/10)——————————————

[参考文献] Michael Artin: Algebra (2nd Edition)

1 域的例子

[域扩张] 给定一对域

,
称为
的一个域扩张,或扩域。
  • 记号
    表示
    的域扩张。

[数域] 数域

的一个子域。
  • 的任何子域都包含
    有理数域
    ,所以数域是
    的域扩张。
  • 最常被研究的数域是代数数域,其所有元素都是代数数。

[有限域] 有限域是包含有限个元素的域。

  • 一个有限域包含一个素域
    ,因此它是那个素域的域扩张。

[函数域] 有理函数域

的扩张称为函数域。
  • 函数可以用方程
    定义,其中
    是不可约复多项式,变量为
    .

2 代数元和超越元

[代数元]

是域
的扩张,令
的元素,
上的代数元,如果
是系数在
上的首一多项式的根,比如:

.

[超越元] 一个元素是

上的超越元,如果它不是
上的代数元——即如果它不是任何这种多项式的根。
上的所有元素都是
上的代数元,因为它是多项式
的根。
  • 替换同态
    ,如果
    是单射,那么
    是超越元,如果
    不是单射,即核非零,那么
    是代数元。

[命题1---

上的既约多项式]
的扩域,
上的代数元。以下关于系数在
中的首一多项式
的条件是等价的。满足这个条件的唯一的首一多项式称为
上的既约多项式。
  • 中以
    为根的,次数最低的首一多项式。
  • 的既约元,且
    的根
  • 的系数在
    中,
    的根,且
    的由
    生成的主理想是极大理想。
  • 的根,且如果
    中的任意以
    为根的多项式,那么
    整除
    .

[

上的次数]
上的不可约多项式的次数称为
上的次数。

[由

生成的子域]
的扩域,
由元素
生成的子域记为
:
是包含
的最小子域。
  • 类似地,
    是包含
    的最小子域

[由

生成的环]
上由元素
生成的环记为
  • 它是
    的像,它的元素可以由系数在
    中变量为
    的多项式
    组成:
  • 的分式域同构。
  • 类似地,如果
    的包含
    和这些元素的最小环记为
    ,它由
    的元素
    组成,
    可表示为系数在
    中变量为
    的多项式,
  • 是环
    的分式域。
  • 如果
    上的超越元,那么
    是同构,
    与有理函数域
    同构。对于所有的超越元
    所有域扩
    都是同构的。

[命题2---代数元生成的环域相等]

是域扩
的元素,它是
上的代数元,令
上的既约多项式,
  1. 典范映射
    是同构,且
    是域,因此
  2. 更一般地,令
    是扩域
    的元素,且是
    上的代数元,那么环
    与域
    相等。
证明:(1) 令
是替换映射
,因为理想
是极大理想,
生成核,且
的像
同构。另外因为
是域,因此
是域。因为
的分式域,所以

(2) 由归纳:

[命题3---通过次数确定基]

上的代数元,且令
上的既约多项式。如果
的次数为
,即如果
上的次数为
,那么
上的向量空间
的基。

[命题4---相等的既约多项式]

是域,
是域扩
的元素。设
上的代数元。存在域的同构
上的恒等映射
,当且仅当
上的既约多项式是相等的。
证明: 因为
上的代数元,
,类似地,
, 假设两个元素的既约多项式都等于
,那么由命题2存在同构:

要证的同构
是复合映射

反过来,如果存在一个同构
上的恒等映射,且将
映为
,且如果
是系数在
的多项式使得
,那么同样
。所以这两个元素的既约多项式相等。

[定义---域扩张的同构]

是同一个域
的扩张,一个同构
,如果它在子域
上的限制是恒等映射,那么它称为
-同构,或域扩张的同构。
  • 如果存在
    -同构
    ,那么
    称为同构的扩域。

[命题---根的像也是根]

的域扩张的同构,令
是系数在
上的多项式。令
上的根,且令
是它在
上的像,那么
也是
的根。
证明: 假设
,因为
-同构且因为
,所以
. 因为
是同态,所以

因此
的根。

3 扩域的次数

[扩域的次数]

的扩张
,当被看作是
-向量空间时,
的维数称为扩域的次数,记为
  • 次数是域扩张的基本性质
例:
-基
,因此次数

[有限扩张] 域扩张

称为有限扩张,如果它的次数是有限的。
  • 次数为
    的扩域称为二次扩域(quadratic),次数为
    称为三次扩域(cubic)。

[引理---次数为1的情况]

  1. 一个扩域
    次数为
    ,当且仅当
  2. 扩域
    的元素
    上次数为
    ,当且仅当
    的一个元素。
证明:如果
作为
上的向量空间维数为
,那么
的任何非零元都是一个
-基,如果
是基,那么每个
的元素都属于

由定义,
上的次数是既约多项式的次数,如果为
,那么多项式就是
,如果
有属于F的系数,那么
属于

[命题---添加平方根可得到二次扩域] 假设域

的特征不为
,即在
。那么
的任何二次扩域
都可以通过添加一个平方根得到:
, 其中

反之,如果

属于
的扩域,且
,那么
的二次扩域。
证明:首先证明每个二次扩域
都可以通过添加,系数在
内的二次多项式
的根得到。我们选择元素
,
,那么
上的线性不相关集合。因为
作为
上的向量空间维数为
,所以这个集合是
的一组基。因此
的系数在
中的线性组合,
,那么
是f(x)=x^2+bx+c 的根,因为
,所以这个多项式在
上是既约的。

多项式
的判别式是
。在特征不为
的域中,二次公式
可以解方程
。平方根有两种情况,令
是其中一个,那么
,
,又因为
,所以
上生成
。反之,如果
,但
,那么
-基,所以
.

[命题---代数元所在扩域的次数]

  1. 如果扩域的元素
    上的代数元,那么
    的次数
    等于
    上的次数。
  2. 一个扩域的元素
    上的代数元,当且仅当次数
    是有限的。
证明: 如果
上的代数元,那么由定义,它的次数等于它在
上的不可约多项式
的次数。如果
的次数为
, 那么
-基
,所以

如果
不是代数元,那么
上的维数是无限的。

[定理---次数的乘法性质]

是域,那么
因此
都整除
证明:令
作为
-向量空间的基,令
作为
-向量空间的基。所以
。需证明
个乘积的集合
作为
-向量空间的基。当次数无限时推导类似。

, 因为
上的基,所以
可以唯一地表示成的
,系数
。因为A是K在F上的基,所以每个
可以唯一地表示成
,系数
那么
这表明
张成作为
-向量空间的
。如果这个组合为零,那么
为零
,即
为零
,所以
是不相关的,所以它是
上的基。

[推论1]

  1. 是次数为
    的有限扩域,且令
    ,那么
    上的代数元,且它在
    上的次数整除
    .
  2. 是域,如果元素
    上是代数元,那么它在
    上是代数元。如果
    上的次数为
    ,那么它在
    上的次数最多是
  3. 一个由
    上有限多个代数元生成的扩域
    是一个有限扩张,一个有限扩张由有限个元素生成。
  4. 如果
    的扩域,那么
    中是
    上的代数元的元素组成
    的一个子域。
证明:(1) 元素
生成中间域
,由乘法性质有
,因此
是有限的,且整除

(2) 令
上的不可约多项式,因为
也是
的元素,因为
的根,所以
上的不可约多项式
整除
,所以
的次数最多等于
的次数。

(3) 令
生成
,且是
上的代数元。令
是由前
个元素生成的域
。这些域形成一个链
, 因为
上是代数元,所以它在更大的域
上也是代数元,因此次数
对于每个
都是有限的。由乘法性质,
是有限的。

(4) 需证明如果
的在
上是代数元的元素,那么
等也是
上的代数元。这可以从(1)(3)中得到,因为他们是域
的元素。

[推论2]

的次数为素数
的扩域,如果元素
不属于
,那么
上的次数为
,且

[推论3]

是域F的扩域,
的子域,也是
的有限扩张。令
的由
生成的子域,令
,那么
整除
证明:乘法性质说明
整除
。假设
由一个元素在
上生成:
,那么
上的次数等于
不超过
上的次数
。乘法性质表明
. 由多个元素生成的情况可以通过一次添加一个元素,归纳证明。

e8f5011032c073184857ccd304b23130.png
如果
互素,那么

4 求既约多项式

[引理---求

的多项式]
  1. 元素
    的幂之间的一个线性相关关系
    意味着
    是多项式
    的根。
  2. 是域
    的扩张中的代数元,且令他们在
    上的次数为
    。共
    个单项式

张成作为
-向量空间的
证明:(2) 因为
上的代数元,所以
,单项式们列出了
.
  • 引理表明:给定
    的既约多项式,就可以知道以
    为根的多项式,但是这个多项式可能不是既约的。
  • 上的既约多项式是次数最低的以
    为根的多项式,为了确定这个既约多项式,需要知道
    上的一组基,即如果
    是无关的,那么得到的
    的多项式就是既约的。

5 尺规作图

证明无法仅通过尺规作图将任意角三等分。

[尺规作图]

  1. 给定平面两点,这些点是构造的(constructed)。
  2. 如果两个点
    已被作出,我们可过他们画一条直线,或以
    为 圆心画一个过点
    的圆。这样的线和圆是构造的。
  3. 已作出的圆和直线的交点是构造的。
基本的作图:点到直线的垂线,直线的平行线,在直线上标注长度。

[可构造的] 点,线,圆称为可构造的,如果他们可以按以上规则通过有限多步得到。

[命题---点坐标所在的域]

  1. 是坐标
    在实数域
    内的点,过
    的直线由系数属于
    的线性方程定义。以
    为中心过
    的圆由系数属于
    的二次方程定义。
  2. 是由线性方程定义的直线或由二次方程定义的圆,方程的系数属于实数域
    ,那么
    的交点的坐标属于
    ,或属于
    的实二次扩域
    .

[定理---可构造点的坐标]

是可构造的点。对于某整数
,存在域的链

, 使得:
  • 是实数域的子域
  • 的坐标属于
  • 对每个
    ,次数
    等于
    .

因此次数

的幂。

[可构造的实数] 我们称一个实数

是可构造的,如果点
是可构造的。
  • 因为可以通过尺规作图标注长度,所以实数
    是可构造的,当且仅当存在一对可构造的点
    之间的距离为

[推论---可构造实数的次数]

是可构造的实数,那么
是代数数,且它在
上的次数是
的幂。

[可构造的角]

是可构造的,如果可以构造两条直线夹角为
  • 如果在其中一条线上标注单位长度,并向另一条直线作垂线,那么就构造出了
    。反过来,如果
    是可构造实数,那么我们可以通过逆过程得到夹角为
    的两条直线。

[引理---20度角不可能作出] 实数

上的代数元,且它在
上的次数为
. 因此
不是可构造数。
  • 因此无法三等分
    度角,从而证明了尺规作图无法三等分任意角。
,其中

那么
,且

所以
是多项式
的根,这个多项式在
上不可约因为它没有整数根。所以它是
上的既约多项式。所以
上的次数是
也是。

[推论]

是素整数,如果正
-边形可以用尺规作图构造,那么对某个整数

[定理---可构造数的域]

都是实数域
的子域,且有性质
。那么
的每个元素都是可构造的。

[引理]

  1. 可构造的数形成
    的子域。
  2. 如果
    是正可构造数,那么
    也是。
证明:
(1) 需要证明如果
是正可构造数,那么
也是可构造的。加减可以通过标注长度做到;乘除使用相似三角形:如下图,通过画平行线作相似三角形,令
,那么
;令
,那么

(2) 还是用相似三角形,需要作
,使得
:使用圆内接三角形,作直径为
的圆,然后作以直径为斜边的直角三角形。

ca728ee4b46455c013ae380932a1ce14.png

77732fbc2581206dbdf4a85e5b682514.png

6 添加根

[添加根到域] 给定系数属于

的多项式
,可以把
的根添加到
:构造多项式环
的商环K=F[x]/(f),
  • 构造给出同态
    的剩余
    满足关系

[引理---添加根]

是域,
中的既约多项式,那么环
的扩域,且
的剩余
中的一个根。
证明:因为
是极大理想,且同态
的元素映为常数多项式的剩余,是一个单射,所以环
是域,。所以
的像是
的一个子域,那么
的扩域。
  • 多项式
    上完全分裂,如果它在
    上的因子都是线性因子。

[命题---存在使

分裂的扩域]
是域,
上的正次数首一多项式。存在
的扩域
使得
上完全分裂。
证明:按
的次数归纳。初始情况:
上的根是
,所以
是某个多项式。如果假设正确,将
替换成
,完成归纳。否则,选择
的不可约因子
,存在
的域扩
,在其中
有根
,那么
也是
的一个因子。用
替换
,得到初始情况。

[命题---多项式环之间的关联]

使系数属于
的多项式,
,且令
使
的扩域,
  1. 多项式环
    作为子环包含于
    中,所以在
    中做的运算在
    中也有效。
  2. 带余除
    ,在
    中和在
    中得到的结果相等。
  3. 整除
    ,当且仅当
    中整除
    .
  4. 中和
    中,计算得到的
    的(首一)最大公因子相等。
  5. 如果
    中有相同的根,那么它们在
    中不是互质的。如果
    中不是互质的,那么存在扩域使得它们在其中有相同的根。
  6. 如果
    使
    得既约元,且
    中有相同的根,那么在
    整除

[多项式的导数] 多项式

的导数
,如果
的系数属于域
,那么它的导数
也是。

[引理---根是重根的条件]

是系数属于
的多项式。一个属于
的扩域
的元素
是一个重根,即
整除
,当且仅当它既是
的根,也是
的根。
证明:如果
的根,那么
整除
,那么
的重根,当且仅当它是
的根,
,代入
当且仅当

[命题---存在有重根的扩域的条件]

是系数属于
的多项式,存在
的扩域
在其中有重根,当且仅当
不是互素的。
证明:如果
中有重根,那么
中有相同的根,所以它们在
中都不是互素的。相反,如果
不互素,那么它们在某扩域
上有相同的根,从而
在其上有重根。

[命题---没有重根的条件]

中是既约多项式,
  1. 的任意扩域上都没有重根,除非导数
    是零多项式。
  2. 如果
    是特征为
    的域,那么
    的任何扩域上都没有重根。
证明:(1) 需要证明
是互素的,除非
'是零多项式。因为
是既约的,如果
不是零,那么它的次数小于
的次数,所以
没有公因子。

(2) 在特征为零的域上,非常数多项式的导数不是零。
  • 的特征
    是素数时,非常数多项式
    的导数可能是零:当所有
    的单项式的幂次都可以被
    整除时。

7 有限域

[有限域的阶] 有限域

的特征不是零,所以是一个素数,因此
包含一个素域
是次数
,作为
-向量空间,
与列向量空间
同构,
的元素数量为
,即有限域的阶是一个素数的幂,记为
:

[定理---关于有限域]

是素整数,
的正次幂,
  1. 是阶为
    的域。
    的元素是多项式
    的根。
  2. 多项式
    在素域
    中的既约因子,是
    中的次数整除
    的既约多项式。
  3. 是阶为
    的域,
    中非零元组成的乘法群
    是一个阶为
    的循环群。
  4. 存在阶为
    的域,且所有阶为
    的域都是同构的。
  5. 阶为
    的域包含阶为
    的子域,当且仅当
    整除

[推论] 对每个正整数

,在素域
上存在次数为
的既约多项式.

8 本原元

[本原元]

是域
的扩域,元素
生成
,即
,那么
称为这个扩张的本原元。

[定理---本原元定理] 特征为零的域

的每个有限扩域
都包含本原元。
证明:因为扩域
是有限的,
由有限的集合生成。比如
. 用
归纳,当
定理成立,所以我们假设
由单个元素
生成,那么
可由两个元素
生成。从而定理的证明就缩减到了
由两个元素生成的情况,需要以下引理:

[引理]

是特征为零的域,
是由元素
生成的
上的扩域。 除了有限多个
之外的所有
上的一个本原元。
证明:令
各自的
上的既约多项式。令
的扩域,在其中
都完全分裂。它们的根分别为
, 和
,其中
,

因为特征零,所以根都是互不相同的。令
,
仅对至多一个
成立。所以对于除了有限多个
的所有
都是互不相同的。需证明除了那个“坏”的
值,
是本原元。写成

。多项式
的根也是
。这个多项式的系数不属于
,但是因为
,
,所以
的系数在
中。

考察
的最大公因子
,因为
.
是那些也是
的因子的
的积,即那些
既是
的根,也是
的根。其中一个公共根是

不是
的根,所以
是唯一的
的公共根,所以
。 因为
的元素,所以
也是
的元素,所以
也属于
,所以

9 函数域

[函数域] 关于变量

的有理函数域
记为
,它的元素是复多项式的分式
。函数域是
的有限扩域。

[本原多项式]

的扩域
的次数为
的本原元,令
上的既约多项式,所以
同构于域
对应
的剩余。去分母,
变成本原多项式:

系数

是关于
的多项式,最大公因子是
是首一的。
  • 的黎曼面:复
    -空间
    上的轨迹
    -平面
    页分支覆盖。分支点是
    上的点
    ,使得单变量多项式
    有少于
    个根,即有重根或
    的首项系数
    的一个根。用
    表示
    去掉一些未指定的有限子集后剩下的部分。

[扩域的同构]

的扩域
之间的同构,是同构
,它在
上被限制为恒等映射。

[分支覆盖的同构]

的分支覆盖
的同构是连续的,双射
与这些面到
的投影相容,
  • :从
    中删除一些有限的集合,使得
    是双射。
  • 路连通:称分支覆盖
    是路连通的,如果
    是路连通的,即对
    的每个有限子集
    ,集合
    是路连通的。

[定理---黎曼存在定理]

次函数域的同构类,和
的连通
页分支覆盖的同构类,之间存在双射对应,使得由既约多项式
确定的扩域
的类,对应于它的黎曼面
的类。

[命题---同构扩域对应同构覆盖]

分别是
中的既约多项式。令
是由它们定义的扩域,且令
是黎曼面
。如果
是同构的扩域,那么
是同构的
的分支覆盖。
证明:
中的剩余称为
,是
的一个根,即
,且一个
-同构
给出了
中的一个根:
,所以
可以表示为
中一个元素模
的剩余,令
是这个元素,定义同构

因为在
,而在
表示
,所以
属于理想
,存在
使得

如果
中的点,那么
,且
。所以
中的点。

因为
,所以它们的系数是关于
的有理函数,可能有分母,所以
在一个有限的点集上没有定义。
的逆函数通过交换
得到。

1fc301b419fac0d503a74dcda9832050.png

[剪切和粘贴]

的黎曼面
为例,如上图,
  • 剪切:沿
    的负半轴剪开,将
    分成了
  • 粘贴:用以下方式构建和
    同构的分支覆盖。
    是复平面
    的两个副本,将它们叠起来沿实轴负半轴剪开,这些
    的复制称为页。然后将
    边与
    边粘贴,
    边与
    边粘贴。

e452637cb1e33ff0aed610de7002cbc0.png

[剪切n页分支覆盖] 给定

页分支覆盖
,令
上的分支点的集合。
  • ,选择不相交的从
    到无限的半直线
    ,沿着这些半直线剪开
    ,也在所有位于半直线上方的点处剪开
  • 剪开
    意味着去掉所有
    中的点,包括
    ;剪开
    意味着去掉所有这些位于半直线上方的点。

[引理---X会被剪成n页]

上方被剪开时,它分解成了
个页
的并,可以任意标号排序。每个页双射地投影到平面

[粘贴n页分支覆盖] 平面

个副本称为页,标记为
,堆叠在
上方。在
上,绕分支点
逆时针转一个圈
,称没越过
的那一边为
边,越过
的那一边
边。记页
的两边为

a4e56d19af3639fc62406be744c85a4c.png
  • 分支数据:对于
    ,给定指标
    的置换
  • 粘贴规则:如果
    ,那么沿
    将边
    粘合。
  • 真分支点:如果
    是平凡置换,那么每个页和自己粘合,就不需要剪切,所以称
    不是真的分支点。

[引理---每个分支覆盖都可通过剪切粘贴构造] 每个

页分支覆盖
都同构于一个用剪切粘贴步骤构造出的
页分支覆盖。
  • 页的标号是任意的。
  • 置换
    由分支覆盖
    唯一确定。一个标号置换
    会把
    变成共轭

[引理---分支覆盖同构的条件]

是通过剪切粘贴,用相同的点
和半直线
构造出的分支覆盖。设
是定义粘贴数据的置换。那么
是同构的分支覆盖,当且仅当存在置换
使得对每个

[引理---分支覆盖路连通的条件] 通过剪切粘贴构造的分支覆盖

,是路连通的,当且仅当置换
生成对称群的子群
,且
可迁地作用在标号
上。
证明:每个页是路连通的。如果置换
映为
,那么页
就会沿
粘贴到一起,那么从
的一点到S_j的一点之间就会存在跨越切口的短路。又因为页是路连通的,所有
的点可以用路连通,所以
是路连通的,当且仅当对每一对
,都存在置换
的序列使得
而这成立当且仅当
的作用可迁。

[计算置换] 将黎曼曲面与我们熟知的黎曼曲面关联起来,即

的黎曼曲面
。令
的分支点,其中
是形如

的多项式。

替换

, 得到单变量多项式

[引理---置换包含k循环的条件]

的根,假设:
  • -重根,且
  • 偏导数
    在点
    处非零。

那么在点

处,页的置换包含一个
-循环。

10 代数基本定理

[代数封闭]

是代数封闭的,如果每个正次数系数属于
的多项式在
中都有根。

[代数基本定理] 每个复系数非常数多项式都有一个复根。

证明大纲:要证复系数非常数多项式
有一个复根。如果
,那么
是一个根,所以假设
定义了从复
-平面到复
-平面的函数,令
是圆点在
-平面的半径为
的圆,写成参数形式
,我们考察
的像

例子:如果
,那么当
取到
,点
绕半径为
的圆一次,同时,
,点
绕半径为
的圆
次。

是第一行的多项式,对于足够大的
的主要项,令
的最大绝对值,那么如果

由这个不等式,当
取到
绕半径为
的圆转
圈,
也绕原点转了
圈。

改变半径
,因为
是连续函数,像
会随着
连续地变化。当
很小时,
绕常数项
附近形成一个小圈,这个小圈不包围原点。但是当
足够大时
会绕原点转
圈,唯一的解释就是对于某些中间半径
,
经过了原点,这意味着对于圆
上的某个点
,即
的一个根。

下一章:

今天数学学点啥:代数Artin(十六): 伽罗瓦理论(完结)​zhuanlan.zhihu.com
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值