实验(MATLAB的数学运算)学时
2、LU分解 设P为一个数域,A为P上的n阶方阵,可以将矩阵A分解为如下形式 这种分解称为LU分解。 MATLAB当中用函数lu()来计算矩阵的LU分解矩阵。调用格式如下: [L,U]=lu[X] %这个调用格式是最常用的 [L,U,P]=lu[X] %L、U含义同前,P被称为置换矩阵,且有关系LU=PX。 >> X=rand(4) X = 0.2618 0.7009 0.4319 0.9455 0.5973 0.9623 0.6343 0.9159 0.0493 0.7505 0.8030 0.6020 0.5711 0.7400 0.0839 0.2536 >> [L,U]=lu(X) L = 0.4382 0.4160 0.4930 1.0000 1.0000 0 0 0 0.0825 1.0000 0 0 0.9560 -0.2681 1.0000 0 [L,U,P]=lu[X] %L、U含义同前,P被称为置换矩阵,且有关系LU=PX。 >> X=rand(4) X = 0.2618 0.7009 0.4319 0.9455 0.5973 0.9623 0.6343 0.9159 0.0493 0.7505 0.8030 0.6020 0.5711 0.7400 0.0839 0.2536 >> [L,U]=lu(X) L = 0.4382 0.4160 0.4930 1.0000 1.0000 0 0 0 0.0825 1.0000 0 0 0.9560 -0.2681 1.0000 0 U = 0.5973 0.9623 0.6343 0.9159 0 0.6711 0.7507 0.5264 0 0 -0.3212 -0.4809 0 0 0 0.5622 >> L*U ans = 0.2618 0.7009 0.4319 0.9455 0.5973 0.9623 0.6343 0.9159 0.0493 0.7505 0.8030 0.6020 0.5711 0.7400 0.0839 0.2536 3、QR分解 设P为一个数域,A为P上的n阶方阵,可以将矩阵A进行正交三角分解,分解为酉矩阵Q和上三角矩阵R的乘 积,其中上三角矩阵R为 矩阵A可以表示成为A=QR,称为QR分解。MATLAB中用qr()函数计算矩阵的QR分解矩阵,调用格式为: [Q,R]=qr(A) %这个调用格式是最常用的 [Q,R,E]=qr(A) %Q、R含义同前,E被称为置换矩阵,且有关系AE=QR。 >> X=rand(4) X = 0.8735 0.9614 0.8580 0.3567 0.5134 0.0721 0.3358 0.4983 0.7327 0.5534 0.6802 0.4344 0.4222 0.2920 0.0534 0.5625 >> [Q,R]=qr(X) Q = -0.6619 0.5935 -0.0977 -0.4473 -0.3890 -0.7920 -0.1729 -0.4375 -0.5552 -0.0876 -0.3000 0.7708 -0.3199 -0.1128 0.9330 0.1199 R = -1.3197 -1.0650 -1.0932 -0.8511 0 0.4321 0.1777 -0.2845 0 0