matlab人口增长线性回归拟合_【预测算法】 线性回归原理及R语言实现

回归分析是统计学和机器学习的基础,本文深入讲解线性回归的最小二乘法原理,通过矩阵形式推导并用matlab进行实际案例分析,包括模型检验、预测和离群点处理,揭示最小二乘法的几何和概率解释。
摘要由CSDN通过智能技术生成

5ea5c064864401ff3d4a85b0071f0aa6.png

回归分析是统计学的核心算法,是机器学习最基本算法,也是数学建模最常用的算法之一。

简单来说,回归分析就是用一个或多个自变量来预测因变量的方法,具体是通过多组自变量和因变量的样本数据,拟合出最佳的函数关系。

本篇由前入深将线性回归的原理讲清楚,并用案例演示实际操作。

一、最小二乘法

设有

组样本点:

例1,现有10期的广告费用与销售额的数据:

0a2761cc5e51e14be0b07c0b03f701d2.png

先画散点图观察一下:

cost<-c(30,40,40,50,60,70,70,70,80,90)
sale<-c(143.5,192.2,204.7,266,318.2,457,333.8,312.1,386.4,503.9)
dat<-as.data.frame(cbind(cost,sale))
plot(dat)

2889f2aace3cfb619bf11f27e0de03a6.png

可见,这些散点大致在一条直线上,一元线性回归就是寻找一条直线,使得与这些散点拟合程度最好(越接近直线越好)。

d9f32be98c31f32fc4b8853a15e54514.png

比如画这样一条直线,方程可写为:

(线性模型), 其中
是待定系数,目标是选取与样本点最接近的直线对应的
.

那么,怎么刻画这种“最接近”?

是与横轴
对应的直线上的点的纵坐标(称为线性模型预测值),它与样本点
对应的真实值
之差,就是预测误差(红线长度):

适合描述散点到直线的“接近程度”。

但绝对值不容易计算,改用:

我们需要让所有散点总体上最接近该直线,故需要让总的预测误差

最小。

于是问题转化为优化问题,选取

使得

(1)

这就是“最小二乘法”,有着很直观的几何解释。

二、问题(1)求解

这是个求二元函数极小值问题。

根据微积分知识,二元函数极值是在一阶偏导等于0点处取到:

解关于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值