人口预测模型基础介绍

本文介绍了人口预测的基础知识,包括预测考虑的因素如“生”、“死”、“迁”,并详细阐述了推算法、队列法、线性回归法和非线性模拟法等预测方法,探讨了各种方法的适用场景和优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 人口预测需要考虑因素

人口预测也就是某区域某段时间内的人数的预测。往大的方面通常需要考虑 “生”“死”“迁”。往小的方面通常需要考虑 “年龄段”,再细究可能要考虑更多因素,需要具体问题具体分析。

2. 人口预测方法

人口预测方法主要有四大类:推算法队列法线性回归法非线性模拟法

2.1 推算法

推算法:根据人口增长的趋势与某种数学分布相联系来建立模型,也就是常见的根据数据来确定需要啥模型,比如看着像二次函数,那就用二次函数拟合。这是早期人口学预测较常用的方法,基本思路来自于统计研究生物种群内个体数量随时间变化的关系,通常回答生物数量经过多长时间会翻倍,或者经过多长时间会减半之类的问题。常见的方法有:马尔萨斯模型( M a l t h u s Malthus Malthus模型) L o g i s t i c Logistic Logistic 人口增长模型等。

这类方法可以对人口变动的基本趋势进行判断,但对于比较复杂的情况无法进行准确的预测。

2.2 队列法

队列法:也称为要素预测法,主要是将未来人口数据看作一个随时间变化的队列,根据此建立一个离散的时间模型,主要是考虑人口年龄分布效应的一种预测方法。常见的方法有:莱斯利矩阵模型( L e s l i e Leslie Leslie 矩阵模型)凯菲茨矩阵模型等。

这类方法可以对人口变动有较好的预测,也是现在比较常见的,但对于数据的要求比较高,需要分年龄人口数据、生育率、死亡率、迁移率等多方面的数据。(需要根据自己的情况选择需要的数据)

2.3 线性回归法

线性回归法:根据影响因素建立回归模型,进行线性回归预测,主要是在控制其他条件不变的情况下,考察因变量与自变量之间的关系。常见的方法有:ARMA模型(时间序列模型)多元回归模型等。

这类方法预测效果相较于队列法会差些,而且由于人口变动不是线性的,所以长期效果并不理想,适合短期的预测。

2.4 非线性模拟法

非线性模拟法:通过建立非线性模型来模拟人口数量在未来的变化,主要是解决变量之间无法建立线性模型,或者是变量之间的关系无法完全确定,或面临 “小样本”、“贫信息”的情况。常见的方法有:神经网络灰色预测等。

这类方法适用于数据不完整,或者影响因素无法确定的情况,预测结果可能不会很理想,但有较好发展前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦什

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值