击上方△头像可进入主页,进入专栏了解更多精彩内容~
人群计数统计
论文名称:
Learning from Synthetic Data for Crowd Counting in the Wild
论文链接:
https://arxiv.org/abs/1805.08657
源码链接:
https://github.com/gjy3035/GCC-SFCN
论文简介:
条件生成对抗网络(cGAN)导致条件图像生成任务的大幅改进,这是计算机视觉的核心。到目前为止,主要关注的是性能改进,而使cGAN对噪声更具鲁棒性的努力很少。回归(生成器)可能导致输出中任意大的错误,这使得cGAN对于实际应用程序不可靠。在这项工作中,引入了一种新的条件GAN模型,称为RoCGAN,它利用模型目标空间中的结构来解决问题。
GCC数据集由15,212幅图像组成,分辨率为1080×1920,包含7,625,843人。 与现有数据集相比,GCC是图像数量和人数的更大规模的人群计数数据集。该项目在GCC数据集上复制了一些经典网络(mcnn、csrnet、sanet等)和一些基准网络(alexanet、vgg、resnet等)。
人体姿态估计
论文名称:
PifPaf: Composite Fields for Human Pose Estimation
论文链接:
https://arxiv.org/abs/1903.06593
源码链接:
https://github.com/vita-epfl/openpifpafwebdemo
论文简介:
提出了一种新的自下而上的方法,用于多人2D人体姿态估计,特别适用于城市交通,如自动驾驶汽车和交付机器人。 新方法PifPaf使用部件强度场(PIF)来定位身体部位,使用部件关联域(PAF)将身体部位相互关联以形成完整的人体姿势。 该方法在低分辨率和拥挤,杂乱和遮挡的场景中优于以前的方法。
更多内容,请关注微信公众号:码科智能,Mark.AI专栏简介:
首个深度学习垂直领域资源推荐专栏,更新内容主要为人工智能与深度学习领域的论文开源源代码,用知识修炼心灵,以智慧对话世界,在这里,持续感受人工智能技术的魅力。
Mark.AI专栏推荐:
►「码上十点」十月份机器学习最火的四篇文章
►「码上一课」快而准,经典的轻量级深度神经网络(论文代码)
►「码上一课」2018计算机视觉顶会论文及源代码分享