Kai Zhou对Friends打分是4分, 对Bedtime Stories打分是3分,没有对RoboCop打分 Shuai Ge没有对Friends打分,对Bedtime Stories打分是3.5分 …… 为简单,咱将此数据存成csv文件,形成一个二维的矩阵,假设存在D:\train.csv, 数据如下:
Name,Friends,Bedtime Stories,Dawn of the Planet of the Apes,RoboCop,Fargo,Cougar Town
Kai Zhou,4,3,5,,1,2
Shuai Ge,,3.5,3,4,2.5,4.5
Mei Nv,3,4,2,3,2,3
xiaoxianrou,2.5,3.5,3,3.5,2.5,3
fengzhi,3,4,,5,3.5,3
meinv,,4.5,,4,1,
mincat,3,3.5,1.5,5,3.5,3
alex,2.5,3,,3.5,,4复制代码
先从csv文件中加载二维矩阵,代码如下:
def load_matrix():
matrix = {}
f = open("d:\\train.csv")
columns = f.readline().split(',')
for line in f:
scores = line.split(',')
for i in range(len(scores))[1:]:
matrix[(scores[0], columns[i])] = scores[i].strip("\n")
return matrix
matrix = load_matrix()
print "matrix:", matrix复制代码
load_matrix()解析csv文件,返回一个dictionary, 该dictionary以(行名,列名)为索引
数据有了,下面咱就正式开始干活了 ,推荐系统要干些什么呢?
咱以电影推荐来说,推荐系统需要解决的几个主要问题:
1. 判断两个电影,两个观影人之间的相似度
2. 找到和某影片最相似的影片, 或找到和某观影人有同样兴趣的人
3. 找到某观影人可能喜欢的电影,或找到对某影片感兴趣的人
2. 推荐系统的基础,判断相似度
针对咱的电影推荐来说,就是判断两个电影,两个观影人之间的相似度。 2.1 欧几里德距离计算相似度 最简单的,最容易理解的就是欧几里德距离. 那么,什么是欧几里德距离,怎么用呢? 请对比评价数据,看下图:
EuclideanDistance.png (6.73 KB, 下载次数: 17)
2015-4-22 21:01 上传
咱用两个电影Fargo和Cougr Town来取例 图中X轴代表电影Fargo, Y轴代表电影Cougr Town, Kai Zhou给电影Fargo 打1分,Cougr Town打2分,画到图上
同理,咱可以将Shuai Ge和Mei Nv的数据点都画到图上 很明显,咱可以看出Kai Zhou与Mei Nv 离得近,与Shuai Ge离得远,所以说Kai Zhou与Mei Nv的兴趣更相近. 用数学式子表达出来就是:
Kai Zhou与Mei Nv的距离的平方: (2 – 1)^2 + (3 – 2)^2 = 2
Kai Zhou 与Shuai Ge的距离的平方: (2.5 – 1)^2 + (4.5 – 2)^2 = 8.5
2 < 8.5, 所以Kai Zhou与Mei Nv比Shuai Ge兴趣更近. 这就是利用欧几里得距离来判断相似度 两个用户对所有电影的评价相似度的和,就是两用户的相似度
2.2 归一化处理
为了方便比较处理后的数据,一般还需要对计算出来的结果进行归一化处理。
数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。
原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。
上面的介绍太学术化了吧,不容易懂,我的理解:归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一 定范围内。
简单的说,我们希望,处理后的数据取值范围在0-1之间. 在数学上有很多归一化处理的方法 常用的有
一、min-max标准化(Min-Max Normalization)
也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 – 1]之间。
二、Z-score标准化方法
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,
标准差为1
咱可以根据需要选择,不过,针对咱这系统采用的是欧几里德距离,咱可以用下面的更简单的公式:
假设计算出来的欧几里德距离为:n
1 / (1 + n)
当距离为0,归一化后的值为:1
距离越大,归一化后的值越接近0
有了上面的基础知识之后,下面的代码就水到渠成了
def sim_distance(matrix, row1, row2):
columns = set(map(lambda l: l[1], matrix.keys()))
si = filter(lambda l: matrix.has_key((row1, l)) and matrix[(row1, l)] != "" and matrix.has_key((row2, l)) and matrix[(row2, l)] != "", columns)
if len(si) == 0: return 0
sum_of_distance = sum([pow(float(matrix[(row1, column)]) - float(matrix[(row2, column)]), 2) for column in si])
return 1 / (1 + sqrt(sum_of_distance))
print sim_distance(matrix, "Kai Zhou", "Shuai Ge")复制代码
3. 找到和和某观影人有同样兴趣的人,某影片最相似的影片
a.有了上面的代码,找到和某用户有同样兴趣的人,就非常简单了。只要将某用户和其它所有用户的相似度计算出来,排下序就行了。
def top_matches(matrix, row, similarity=sim_distance):
rows = set(map(lambda l: l[0], matrix.keys()))
scores = [(similarity(matrix, row, r), r) for r in rows if r != row]
scores.sort()
scores.reverse()
return scores
person = "Kai Zhou"
print "top match for:", person
print top_matches(matrix, person)复制代码
b. 找到和某影片相似的影片,这个需要稍微变化下。咱的输入数据是以用户为行数据,影片为列数据, 只要改成以影片为行数据,用户为列数据,一样的调用。 所以需要一个函数,将矩阵转置
def transform(matrix):
rows = set(map(lambda l: l[0], matrix.keys()))
columns = set(map(lambda l: l[1], matrix.keys()))
transform_matrix = {}
for row in rows:
for column in columns:
transform_matrix[(column, row)] = matrix[(row, column)]
return transform_matrix
找到和Friends 相似的影片:
Source code
trans_matrix = transform(matrix)
print "trans:", trans_matrix
film = "Friends"
print "top match for:", film
print top_matches(trans_matrix, film)复制代码
4. 找到某观影人可能喜欢的电影,找到对某影片感兴趣的人
最理想的是找到两个相似度一样的人,可以认为某个人喜欢的电影,另外那个也喜欢。 但是这样有它的缺点,比较好的办法是把所有人的数据都用上,方法如下:
1. 先计算所有人和Kai Zhou的相似度
2. 对于Kai Zhou没有看过,没有评分,而其它人有评分的的影片, 将其评分与相似度相乘,得到的值再除以相似度之和 3. 排序 咱先以给Kai Zhou推荐影片为例来说明, Dawn of the Planet of the Apes 和 RoboCop 这两部影片Kai Zhou都没有看,我们该推荐他看哪部呢? 假设我们计算出来Kai Zhou与其它人的相似度如下:
[(0.3333333333333333, ‘Mei Nv’),
(0.29429805508554946, ‘xiaoxianrou’),
(0.2857142857142857, ‘alex’),
(0.2553967929896867, ‘mincat’),
(0.252650308587072, ‘Shuai Ge’),
即Kai Zhou与Mei Nv 相似度为0.3333333333333333, 与xiaoxiaorou相似度为0.29429805508554946, 其它类似… 那么计算Dawn of the Planet of the Apes对Kai Zhou的推荐值过程如下:
1. 找到Shuai Ge对Dawn of the Planet of the Apes的评价值 乘以Shuai Ge与Kai Zhou的相似度: 3 * 0.252650308587072
2. 找到Mei Nv对Dawn of the Planet of the Apes的评价值 乘以其与Kai Zhou的相似度: 2 * 0.3333333333333333
3. 找到xiaoxianrou 对Dawn of the Planet of the Apes的评价值 乘以其与Kai Zhou的相似度: 3 * 0.29429805508554946
4. fengzhi 没有对Dawn of the Planet of the Apes评价,不用计算
5. 找到mincat对Dawn of the Planet of the Apes的评价值 乘以其与Kai Zhou的相似度: 1.5 * 0.2553967929896867
6. alex 没有对Dawn of the Planet of the Apes评价,不用计算
7. 将 1, 2, 3, 5 步的计算结果相加 得到: 3 * 0.252650308587072 + 2 * 0.3333333333333333 + 3 * 0.29429805508554946 + 1.5 * 0.2553967929896867 = 2.6906069471690612
8. 将1,2,3,5步的参与计算的人的相似度相加: 0.252650308587072 + 0.3333333333333333 + 0.29429805508554946 + 0.2553967929896867 = 1.1356784899956416
9. 将第7步结果除以第8步的结果,就是Dawn of the Planet对Kai Zhou的推荐值: 2.6906069471690612 / 1.1356784899956416 = 2.369162549851047
同样的方法,计算出来RoboCop 对Kai Zhou的推荐值为:3.9277923180363326 所以RoboCop应该对Kai Zhou的吸引力比Dawn of the Planet of the Apes更大. 代码如下:
def get_recommendations(matrix, row, similarity=sim_distance):
rows = set(map(lambda l: l[0], matrix.keys()))
columns = set(map(lambda l: l[1], matrix.keys()))
sum_of_column_sim = {}
sum_of_column = {}
for r in rows:
if r == row: continue
sim = similarity(matrix, row, r)
if sim <= 0: continue
for c in columns:
if matrix[(r, c)] == "": continue
sum_of_column_sim.setdefault(c, 0)
sum_of_column_sim[c] += sim
sum_of_column.setdefault(c, 0)
sum_of_column[c] += float(matrix[(r, c)]) * sim
scores = [(sum_of_column[c] / sum_of_column_sim[c], c) for c in sum_of_column]
scores.sort()
scores.reverse()
return scores
print get_recommendations(matrix, person)复制代码
找到对某影片感兴趣的人和之前类似,需要将矩阵转置就行了,代码如下:
Source code
trans_matrix = transform(matrix)
print get_recommendations(trans_matrix, "Friends")
这就是一个简单的推荐系统的雏型,当然,要实现一个可用的推荐系统,还有很多工作要做。比如推荐的精确度,用户喜欢打斗片,咱不可能给他推荐爱情片吧?比如数据量大了之后,性能问题,扩展性?是基于用户推荐还是物品推荐?……