电影推荐系统php论文,不到100行代码实现一个简单的推荐系统:以电影为例

Kai Zhou对Friends打分是4分, 对Bedtime Stories打分是3分,没有对RoboCop打分 Shuai Ge没有对Friends打分,对Bedtime Stories打分是3.5分 …… 为简单,咱将此数据存成csv文件,形成一个二维的矩阵,假设存在D:\train.csv, 数据如下:

Name,Friends,Bedtime Stories,Dawn of the Planet of the Apes,RoboCop,Fargo,Cougar Town

Kai Zhou,4,3,5,,1,2

Shuai Ge,,3.5,3,4,2.5,4.5

Mei Nv,3,4,2,3,2,3

xiaoxianrou,2.5,3.5,3,3.5,2.5,3

fengzhi,3,4,,5,3.5,3

meinv,,4.5,,4,1,

mincat,3,3.5,1.5,5,3.5,3

alex,2.5,3,,3.5,,4复制代码

先从csv文件中加载二维矩阵,代码如下:

def load_matrix():

matrix = {}

f = open("d:\\train.csv")

columns = f.readline().split(',')

for line in f:

scores = line.split(',')

for i in range(len(scores))[1:]:

matrix[(scores[0], columns[i])] = scores[i].strip("\n")

return matrix

matrix = load_matrix()

print "matrix:", matrix复制代码

load_matrix()解析csv文件,返回一个dictionary, 该dictionary以(行名,列名)为索引

数据有了,下面咱就正式开始干活了 ,推荐系统要干些什么呢?

咱以电影推荐来说,推荐系统需要解决的几个主要问题:

1. 判断两个电影,两个观影人之间的相似度

2. 找到和某影片最相似的影片, 或找到和某观影人有同样兴趣的人

3. 找到某观影人可能喜欢的电影,或找到对某影片感兴趣的人

2. 推荐系统的基础,判断相似度

针对咱的电影推荐来说,就是判断两个电影,两个观影人之间的相似度。 2.1 欧几里德距离计算相似度 最简单的,最容易理解的就是欧几里德距离. 那么,什么是欧几里德距离,怎么用呢? 请对比评价数据,看下图:

6cbb977928e529ff6f0e46249f365cb1.gif

EuclideanDistance.png (6.73 KB, 下载次数: 17)

2015-4-22 21:01 上传

咱用两个电影Fargo和Cougr Town来取例 图中X轴代表电影Fargo,  Y轴代表电影Cougr Town,  Kai Zhou给电影Fargo 打1分,Cougr Town打2分,画到图上

同理,咱可以将Shuai Ge和Mei Nv的数据点都画到图上 很明显,咱可以看出Kai Zhou与Mei Nv 离得近,与Shuai Ge离得远,所以说Kai Zhou与Mei Nv的兴趣更相近. 用数学式子表达出来就是:

Kai Zhou与Mei Nv的距离的平方:    (2 – 1)^2 + (3 – 2)^2 = 2

Kai Zhou 与Shuai Ge的距离的平方: (2.5 – 1)^2 + (4.5 – 2)^2 = 8.5

2 < 8.5, 所以Kai Zhou与Mei Nv比Shuai Ge兴趣更近. 这就是利用欧几里得距离来判断相似度   两个用户对所有电影的评价相似度的和,就是两用户的相似度

2.2 归一化处理

为了方便比较处理后的数据,一般还需要对计算出来的结果进行归一化处理。

数据标准化(归一化)处理是数据挖掘的一项基础工作,不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。

原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。

上面的介绍太学术化了吧,不容易懂,我的理解:归一化化就是要把你需要处理的数据经过处理后(通过某种算法)限制在你需要的一 定范围内。

简单的说,我们希望,处理后的数据取值范围在0-1之间. 在数学上有很多归一化处理的方法 常用的有

一、min-max标准化(Min-Max Normalization)

也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 – 1]之间。

二、Z-score标准化方法

这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,

标准差为1

咱可以根据需要选择,不过,针对咱这系统采用的是欧几里德距离,咱可以用下面的更简单的公式:

假设计算出来的欧几里德距离为:n

1 / (1 + n)

当距离为0,归一化后的值为:1

距离越大,归一化后的值越接近0

有了上面的基础知识之后,下面的代码就水到渠成了

def sim_distance(matrix, row1, row2):

columns = set(map(lambda l: l[1], matrix.keys()))

si = filter(lambda l: matrix.has_key((row1, l)) and matrix[(row1, l)] != "" and matrix.has_key((row2, l)) and matrix[(row2, l)] != "", columns)

if len(si) == 0: return 0

sum_of_distance = sum([pow(float(matrix[(row1, column)]) - float(matrix[(row2, column)]), 2) for column in si])

return 1 / (1 + sqrt(sum_of_distance))

print sim_distance(matrix, "Kai Zhou", "Shuai Ge")复制代码

3. 找到和和某观影人有同样兴趣的人,某影片最相似的影片

a.有了上面的代码,找到和某用户有同样兴趣的人,就非常简单了。只要将某用户和其它所有用户的相似度计算出来,排下序就行了。

def top_matches(matrix, row, similarity=sim_distance):

rows = set(map(lambda l: l[0], matrix.keys()))

scores = [(similarity(matrix, row, r), r) for r in rows if r != row]

scores.sort()

scores.reverse()

return scores

person = "Kai Zhou"

print "top match for:", person

print top_matches(matrix, person)复制代码

b. 找到和某影片相似的影片,这个需要稍微变化下。咱的输入数据是以用户为行数据,影片为列数据, 只要改成以影片为行数据,用户为列数据,一样的调用。 所以需要一个函数,将矩阵转置

def transform(matrix):

rows = set(map(lambda l: l[0], matrix.keys()))

columns = set(map(lambda l: l[1], matrix.keys()))

transform_matrix = {}

for row in rows:

for column in columns:

transform_matrix[(column, row)] = matrix[(row, column)]

return transform_matrix

找到和Friends 相似的影片:

Source code

trans_matrix = transform(matrix)

print "trans:", trans_matrix

film = "Friends"

print "top match for:", film

print top_matches(trans_matrix, film)复制代码

4. 找到某观影人可能喜欢的电影,找到对某影片感兴趣的人

最理想的是找到两个相似度一样的人,可以认为某个人喜欢的电影,另外那个也喜欢。 但是这样有它的缺点,比较好的办法是把所有人的数据都用上,方法如下:

1. 先计算所有人和Kai Zhou的相似度

2. 对于Kai Zhou没有看过,没有评分,而其它人有评分的的影片,  将其评分与相似度相乘,得到的值再除以相似度之和 3. 排序   咱先以给Kai Zhou推荐影片为例来说明, Dawn of the Planet of the Apes 和 RoboCop 这两部影片Kai Zhou都没有看,我们该推荐他看哪部呢? 假设我们计算出来Kai Zhou与其它人的相似度如下:

[(0.3333333333333333, ‘Mei Nv’),

(0.29429805508554946, ‘xiaoxianrou’),

(0.2857142857142857, ‘alex’),

(0.2553967929896867, ‘mincat’),

(0.252650308587072, ‘Shuai Ge’),

即Kai Zhou与Mei Nv 相似度为0.3333333333333333,  与xiaoxiaorou相似度为0.29429805508554946,  其它类似… 那么计算Dawn of the Planet of the Apes对Kai Zhou的推荐值过程如下:

1. 找到Shuai Ge对Dawn of the Planet of the Apes的评价值  乘以Shuai Ge与Kai Zhou的相似度:   3 *  0.252650308587072

2. 找到Mei Nv对Dawn of the Planet of the Apes的评价值  乘以其与Kai Zhou的相似度: 2 * 0.3333333333333333

3. 找到xiaoxianrou 对Dawn of the Planet of the Apes的评价值  乘以其与Kai Zhou的相似度: 3 * 0.29429805508554946

4. fengzhi 没有对Dawn of the Planet of the Apes评价,不用计算

5. 找到mincat对Dawn of the Planet of the Apes的评价值  乘以其与Kai Zhou的相似度: 1.5 * 0.2553967929896867

6. alex 没有对Dawn of the Planet of the Apes评价,不用计算

7. 将 1, 2, 3, 5 步的计算结果相加 得到: 3 *  0.252650308587072 + 2 * 0.3333333333333333 +  3 * 0.29429805508554946 +  1.5 * 0.2553967929896867 = 2.6906069471690612

8.  将1,2,3,5步的参与计算的人的相似度相加: 0.252650308587072 +  0.3333333333333333 + 0.29429805508554946 +  0.2553967929896867 = 1.1356784899956416

9.  将第7步结果除以第8步的结果,就是Dawn of the Planet对Kai Zhou的推荐值: 2.6906069471690612 / 1.1356784899956416 = 2.369162549851047

同样的方法,计算出来RoboCop 对Kai Zhou的推荐值为:3.9277923180363326 所以RoboCop应该对Kai Zhou的吸引力比Dawn of the Planet of the Apes更大. 代码如下:

def get_recommendations(matrix, row, similarity=sim_distance):

rows = set(map(lambda l: l[0], matrix.keys()))

columns = set(map(lambda l: l[1], matrix.keys()))

sum_of_column_sim = {}

sum_of_column = {}

for r in rows:

if r == row: continue

sim = similarity(matrix, row, r)

if sim <= 0:  continue

for c in columns:

if matrix[(r, c)] == "": continue

sum_of_column_sim.setdefault(c, 0)

sum_of_column_sim[c] += sim

sum_of_column.setdefault(c, 0)

sum_of_column[c] += float(matrix[(r, c)]) * sim

scores = [(sum_of_column[c] / sum_of_column_sim[c], c) for c in sum_of_column]

scores.sort()

scores.reverse()

return scores

print get_recommendations(matrix, person)复制代码

找到对某影片感兴趣的人和之前类似,需要将矩阵转置就行了,代码如下:

Source code

trans_matrix = transform(matrix)

print get_recommendations(trans_matrix,  "Friends")

这就是一个简单的推荐系统的雏型,当然,要实现一个可用的推荐系统,还有很多工作要做。比如推荐的精确度,用户喜欢打斗片,咱不可能给他推荐爱情片吧?比如数据量大了之后,性能问题,扩展性?是基于用户推荐还是物品推荐?……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值