门限回归模型的思想_面板门限回归模型及Stata

门限回归模型是一种用于解释跳跃和突变现象的统计方法,由汤家豪提出。通过门限变量的阙值判断,采用分段线性回归模式描述非线性问题。在Stata中,可以使用xthreg命令进行估计。本文通过实例展示了如何设置不同门槛值进行回归分析,并解析了回归结果,揭示是否存在显著的门槛效应。
摘要由CSDN通过智能技术生成

门限回归模型(Threshold Regressive Model,简称TR模型或TRM)是汤家豪于1978年提出了门限自回归模型后进一步将这一思想扩展到回归模型中 。门限回归模型的基本思想是通过门限变量的控制作用,当给出预报因子资料后,首先根据门限变量的门限阙值的判别控制作用,以决定不同情况下使用不同的预报方程,从而试图解释各种类似于跳跃和突变的现象。其实质上是把预报问题按状态空间的取值进行分类,用分段的线性回归模式来描述总体非线性预报问题

STATA回归代码:

王群勇老师xthreg语法格式为

xthreg 被解释变量 解释变量1 解释变量2..., rx(门槛变量影响到的核心变量) qx (门槛变量) thnum(设定的门槛个数,需要大于1小于等于3) grid(交叉点的个数一般设定为400或者300) trim(削减估计每一门槛的部分一般设定为0.01) bs(重复的次数 一般设定为300) thlevel(默认是95%) gen(newvarname) noreg nobslog thgiven options]:

eg1.单一门槛值,门槛变量不是核心变量,影响到核心变量

门槛变量是专利成功投产率,核心变量是FDI

egen countries = group(country)

xtset countries year

xthreg growth rd 控制变量1 控制变量2, rx(FDI) qx(专利成功投产率) thnum(1) grid(400) trim(0.01) bs(500)

eg2.单一门槛值,门槛变量是核心变量

门槛变量是债务率,核心变量是债务率

egen countries = group(country)

xtset countries yea

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值