门限回归模型(Threshold Regressive Model,简称TR模型或TRM)是汤家豪于1978年提出了门限自回归模型后进一步将这一思想扩展到回归模型中 。门限回归模型的基本思想是通过门限变量的控制作用,当给出预报因子资料后,首先根据门限变量的门限阙值的判别控制作用,以决定不同情况下使用不同的预报方程,从而试图解释各种类似于跳跃和突变的现象。其实质上是把预报问题按状态空间的取值进行分类,用分段的线性回归模式来描述总体非线性预报问题
STATA回归代码:
王群勇老师xthreg语法格式为
xthreg 被解释变量 解释变量1 解释变量2..., rx(门槛变量影响到的核心变量) qx (门槛变量) thnum(设定的门槛个数,需要大于1小于等于3) grid(交叉点的个数一般设定为400或者300) trim(削减估计每一门槛的部分一般设定为0.01) bs(重复的次数 一般设定为300) thlevel(默认是95%) gen(newvarname) noreg nobslog thgiven options]:
eg1.单一门槛值,门槛变量不是核心变量,影响到核心变量
门槛变量是专利成功投产率,核心变量是FDI
egen countries = group(country)
xtset countries year
xthreg growth rd 控制变量1 控制变量2, rx(FDI) qx(专利成功投产率) thnum(1) grid(400) trim(0.01) bs(500)
eg2.单一门槛值,门槛变量是核心变量
门槛变量是债务率,核心变量是债务率
egen countries = group(country)
xtset countries yea