门槛回归模型_动态面板门槛模型及stata操作:xthenreg

本文介绍了Stata中用于门槛回归的xthenreg命令,详细阐述了如何设置因变量和解释变量,以及如何处理内生性问题。通过案例展示了如何在模型中不设定kink,并使用静态模型进行估计。xthenreg允许用户指定额外的工具变量,并提供了调整网格点数量、修剪率等参数的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源: 参考自Estimation of Dynamic Panel Threshold Model using Stata,作者: Myung Hwan Seo, Sueyoul Kim, and Young-Joo Kim Hansen(2000)将“门槛回归”模型的基本形式定义为:  6bea6c7118b6c998260d118188d7488d.png 其中,作为解释变量的xi是一个m维的列向量。qi被称为“门槛变量”, Hansen(2000)认为门槛变量既可以是解释変量xi中的一个回归元,也可以作为一个独立的门槛变量。 而面板门槛模型已经广泛应用到实证研究中,2015年开发出来的xthreg命令可以进行hansen所提出的门槛回归模型。 Hansen's(1999)模型是静态的另外固定效应回归估计要求协变量是强外生变量,估计值是一致的。——然而,在许多实际应用程序中,强外生性可能具有限制性。因此,Seo and Shin (2016)将该模型扩展到动态面板模型。 假设如下一个动态面板门槛模型:

a96c995f559c5240ea819012c3c343cc.png

xit可能包含滞后因变量,即xit为Y的滞后期,qit是门槛变量。 1 语法格式 动态面板门槛模型命令为xthenreg,语法格式为:

xthenreg depvar [varlist (q x1 x2 ...)] [if] [in] [, options]

其中depvar是因变量,而indepvars是解释变量变量。

使用该命令前需要注意: 1. xtset应该在运行之前完成。此外,变量必须为事先按(i)面板变量和(ii)时间变量排序。(xtset should be done before running this. Moreover variables must be sorted by (i) panel variable and (ii) time variable beforehand.) 2. 需要强平衡的面板数据(Strongly balanced pane
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值