torchserve使用-网络端访问(三)

目录

1、通过http访问Using REST APIs

2、Using GRPC APIs through python client


通过脚本实现网络端访问。

1、通过http访问Using REST APIs

curl http://127.0.0.1:8080/predictions/densenet161 -T examples/image_classifier/kitten.jpg

实现相同功能:

import cv2
from PIL import Image
from io import BytesIO

def test():
    filename = "examples/image_classifier/kitten.jpg"
    image = Image.fromarray(cv2.imread(filename))
    image2bytes = BytesIO()
    image.save(image2bytes, format="PNG")
    image2bytes.seek(0)
    image_as_bytes = image2bytes.read()

    # Send the HTTP POST request to TorchServe
    import requests

    req = requests.post("http://127.0.0.1:8080/predictions/densenet161", data=image_as_bytes)
    if req.status_code == 200:
        res = req.json()
        print("ret:", res)

结果:

ret: {'tabby': 0.39039885997772217, 'tiger_cat': 0.36372312903404236,
 'Egyptian_cat': 0.21934737265110016, 'lynx': 0.021873705089092255,
  'snow_leopard': 0.0012753388145938516}

2、Using GRPC APIs through python client

Using GRPC APIs through python client

  • Install grpc python dependencies :
pip install -U grpcio protobuf grpcio-tools
  • Generate inference client using proto files
python -m grpc_tools.protoc --proto_path=frontend/server/src/main/resources/proto/ --python_out=ts_scripts --grpc_python_out=ts_scripts frontend/server/src/main/resources/proto/inference.proto frontend/server/src/main/resources/proto/management.proto
  • Run inference using a sample client
  • gRPC python client

python ts_scripts/torchserve_grpc_client.py infer densenet161 examples/image_classifier/kitten.jpg

https://github.com/pytorch/serve/blob/master/ts_scripts/torchserve_grpc_client.py

更多参数配置:

https://github.com/pytorch/serve/blob/v0.2.0/docs/batch_inference_with_ts.md

端口配置:

https://github.com/pytorch/serve/blob/v0.2.0/docs/configuration.md

上一节:torchserve使用-注册模型设置参数(二),下一节:torchserve使用-Torch Model archiver for TorchServe(四)

TorchTorchServe是PyTorch深度学习框的两个组件。Torch是一个用于构建和训练深度神经网络的框架,它提供了一系列的张量操作和自动求导等功能来简化深度学习模型的开发过程。而TorchServe是一个用于将PyTorch模型部署为可在线推理的服务的工具。 TorchServe是一个用于部署和托管深度学习模型的开源模型服务器。通过TorchServe,开发人员可以将经过训练的PyTorch模型部署为RESTful API,从而可以通过发送HTTP请求来进行模型推理。TorchServe还支持模型的热更新、负载均衡和多模型管理等功能,使得模型的部署和管理变得更加简单和高效。 使用TorchServe可以帮助开发人员更轻松地将训练好的模型部署为可在线推理的服务,并且可以通过灵活的接口与外部系统进行交互,满足复杂的业务需求。在使用TorchServe之前,需要安装相关的环境和依赖,可以通过Docker来方便地进行安装和部署。 总结来说,Torch是PyTorch深度学习框架的核心组件,用于构建和训练深度神经网络模型;而TorchServe是一个用于部署和托管PyTorch模型的开源模型服务器,它提供了方便的接口和功能来实现模型的在线推理服务。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [torchserve使用-Torch Model archiver for TorchServe(四)](https://blog.csdn.net/weixin_34910922/article/details/121549320)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [torchserve安装、模型的部署与测试(基于docker)](https://blog.csdn.net/smileyan9/article/details/129245798)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jingbo1801

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值