matlab编程题,Matlab编程习题

1. 求方程xx2 1 x) x2 1 0.5x 0的正根。

解:syms x;

2. 求满足m ln(1 n)>100的最小m 第2题

n 0

解; y=0;n=0;

while y<100

n=n+1;

y=y+log(n);

end

m=n-1

3.

已知函数f(x)=x 2 在(-2, 2)内有两个根。取步长h=0.05, 通过计算函数值求得函数的最小值点和两个根的近似解。(提示:求近似根等价于求函数绝对值的最小值点)

解;x=-2:0.05:2;

y=x.^4-2.^x;

ymin=min(y);

[imin,jmin]=find(y==ymin);

xmin=x(imin,jmin)

ymin=y(imin,jmin)

x1=-2:0.05:x(imin,jmin);

y1=abs(x1.^4-2.^x1);

y1min=min(y1);

[i1min,j1min]=find(y1==y1min);

x1min=x1(i1min,j1min)

y1min=y1(i1min,j1min)

x2=x(imin,jmin):0.05:2;

y2=abs(x2.^4-2.^x2);

y2min=min(y2);

% [i2min,j2min]=find(y2==y2min);

% x2min=x2(i2min,j2min)

% y2min=y2(i2min,j2min)

%第4题

% [x,y]=solve('(x-2)^2+(y+2*x-3)^2=5, 18*(x-3)^2+y^2=36 '

4. (椭园的交点) 两个椭圆可能具有0~4个交点,求下列两个椭园的所有交点坐标

(x - 2) 2 + (y - 3 + 2x) 2 = 5

2 (x-3)2 + (y/3) 2 = 4

[x,y]=solve('(x-2)^2+(y+2*x-3)^2=5, 18*(x-3)^2+y^2=36 ') 4x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值