开始了解Docker是健明的一篇文章跟着jimmy学docker系列之第2讲:一个软件一个容器,那时正在研究虚拟机(Virtual Machine),发现Docker更适合现在的需求,就从基本概念和操作命令开始学习。前期顺风顺水直到看了胡博士的文章使用阿里云+Docker分析RNA-Seq与ChIP-Seq,对其Dockerfile的内容有很多不理解,后来明白Docker并不是单一独立的存在,你想要创建的镜像集成了所需的环境、软件、数据库以及脚本等,是生信处理能力的综合性体现。
显然我知识储备不够,只能默默地回去补习。我需要Docker做什么
通俗的讲,它和虚拟机的作用类似,实现与宿主机资源和系统环境的隔离。但Docker容器技术相比虚拟机具有许多优点,比如:启动速度快、占用内核资源少、轻便以及可移植性等。
在新药研发中,CFDA规定十年后对相关实验数据进行溯源性分析,依然是准确和一致的。这就需要对当初所用的环境和操作进行“打包”处理,Docker为我们提供了Dockerfile来解决自动化创建images的问题,我们可以通过编辑Dockerfile来定制镜像。按照开发和运维(DevOps)人员说法,就是一次创建或配置可以永久在不同平台运行。我的学习路径Docker命令大全
Dockerfile中的指令
B站全套生信视频课程Docker三要素
Dockerfile 是文件指令集,用来说明如何自动创建Docker镜像
Docker Images 是一个只读模板,用来运行Docker容器
Docker Containers 负责应用程序的运行,包括操作系统、用户添加的文件以及元数据
它们三者之间的关系是,通过定制化地编辑Dockerfile创建Images,Images可被下载到不同平台。
Containers是Images的一个运行实例,可以被开启和关闭。当然,还可使用docker commit命令反过来由Containers生成Images,但一般不建议这样做,主要是因为在运行中的容器中进行操作(如:安装软件或添加无关内容)会导致镜像极其臃肿。我的实战操作将centos7作为基础镜像并安装一些工具
1. FROM centos:centos7
2. MAINTAINER ZhiHaoPlus,proea_00@163.com
3. RUN yum update -y && yum upgrade -y && \
yum install -y wget git curl curl-devel gcc python python-devel zsh tar bzip2
gcc-c++ readline-devel gmp-devel \
gcc-gfortran cmake zlib zlib-devel mysql mysql-devel libpng libpng12 libpng-devel libtiff libtiff-devel libjpeg \
libjpeg-devel openssh-clients boost boost-devel && \
yum clean all && rm -rf /tmp/* /var/tmp/*
4. RUN curl 'https://bootstrap.pypa.io/get-pip.py' -o 'get-pip.py' && python get-pip.py && pip install s3cmd设置环境变量、安装miniconda以及所需软件5. WORKDIR /tmp
6. RUN yum install -y java
7. RUN wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-4.5.4-Linux-x86_64.sh
8. RUN bash ./Miniconda3-4.5.4-Linux-x86_64.sh -b -p /opt/miniconda3
9. ENV PATH=/opt/miniconda3/bin:$PATH
10. RUN conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ && \
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/ && \
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/mro/ && \
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ && \
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/ && \
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/ && \
conda config --set show_channel_urls yes
11. RUN conda install R -y
RUN conda install bwa -y
RUN conda install samtools -y
RUN conda install tabix -y
RUN conda install bedtools -y
RUN conda install MACS2 -y
RUN pip install pysam==0.8.3 pybedtools==0.6.9
RUN pip install -d . ngslib
RUN pip install HTSeq==0.6.0 brewer2mpl svgwrite seaborn sklearn
RUN conda install mysql-python下载数据和脚本
12. RUN mkdir -p /data/fastq /data/fasta /data/script /source
13. WORKDIR /data/source
14. RUN git clone https://github.com/ZhihaoPlus/DokcerTest.git
若考虑数据的储存和保密性,可使用挂载指令(VOLUME),不过需要注意的是此指令无法指定宿主机上对应的目录,而是自动生成的,因此在启动容器时选择了另一种挂载方式。创建images并修改名称docker build.
因为在Dockerfile在当前工作目录下,所以用“ . ”代替了绝对路径。
镜像创建成功并生成了一个最终ID
docker images
docker tag aca8551e61bb zhihaoplus/test:test
dcoker images
查看并修改镜像名称启动容器并运行脚本docker run -it -v ~/data/fastq:/data/fastq -v ~/data/script:/data/script aca8551e61bb
nohup bash /data/script/pipeline.sh &
ps -ef
-v参数指定挂载点
脚本成功运行起来了遇到的问题
之前为了测试Dockerfile编辑是否成功,加了指令 CMD echo 'Hello,World!',其在启动容器时执行echo命令,然而奇怪的事情发生了,启动容器后确实输出了'Hello,World!'却没进入容器中,就好像没被开启。如下图:
实际上它只是开启后又立即关闭了(Created到Exited只有2秒)。这跟Docker自身机制有关,当容器内的进程全部退出时,容器也会停止运行,也就是说你得让它一直有事干,没有,就会退出。解决办法
最直接保险的方法是,Dockerfile不加入启动指令(CMD和ENTRYPOINT),这样容器启动后会有一个/bin/bash的进程在运行。有需要让脚本在容器启动时运行,则可以加-d参数让容器在后台以守护状态运行docker run -it -d IMAGES_ID /bin/bash。