一种基于卷积神经网络的中文车牌识别方法
【专利摘要】本发明公开了一种基于卷积神经网络的中文车牌识别方法,S1:车牌定位,将颜色模板匹配算法和轮廓查找算法相结合,定位出车牌;S2:字符分割,将灰度化后的车牌矩形块,二值化、闭操作、取轮廓后,可以得到外接矩形,从而截取出字符图块;S3:卷积神经网络的设计和训练,其中,卷积神经网络设置为10层结构;S4:字符识别,使用S3中预先训练好的卷积神经网络,作为分类器,将要识别的字符输入,得到分类结果和其置信率。通过上述方式,本发明提供的基于卷积神经网络的中文车牌识别方法,具有准确率极高、普适性极强、处理时间很短等优点,在现代智能交通系统、停车场管理、高速公路收费站等场景上有着广泛的应用前景。
【专利说明】
一种基于卷积神经网络的中文车牌识别方法
技术领域
[0001]本发明涉及计算机视觉、数字图像处理和深度学习领域,特别是涉及基于卷积神经网络的中文车牌识别方法。
【背景技术】
[0002]车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、计算机视觉、机器学习等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子警察、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。
[0003]车牌识别系统的硬件基础一般包括触发设备(监测车辆是否进入视野)、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机(如计算机)等,而其软件核心包括车牌定位算法、车牌字符分割算法和字符识别算法。
[0004]车牌定位和车牌字符分割部分主要是使用计算机视觉和图像处理技术。通过对静态图像进行旋转、变换、灰度化、模糊、闭操作、腐蚀、取轮廓、直方图统计等形态学操作,可以从图像中提取出我们所需要部分。
[0005]常用的字符识别方法,大致可以分为两类:光学字符识别技术(OCR)和人工神经网络算法(ANN) ACR主要使用基于模板匹配的算法,方法如下:首先将分割后的字符二值化,并将其尺寸大小缩放为字符数据库中模板的大小,然后与所有的模板进行匹配,选择最佳匹配作为结果。然而该方法有两个显著缺点,一方面,其受限于模板数据库的大小,若数据库太小且分割字符形变大,则很可能产生错误匹配结果;另一方面,匹配过程比较耗时间,对于要求实时性的应用场景是无法接受的。
[0006]ANN算法是机器学习界最流行的算法之一,可以完成复杂的分类任务。一个简化的ANN可以分为输入层、隐藏层和输入层。输入层负责接收数据,隐藏层负责对数据进行分解和处理,整合最后结果到输出层。中间的隐藏层越多,ANN的表征能力越强,越能提取出数据的特征。理论上,3个隐藏层的ANN可以表示任何函数,即可以处理任何分类任务。然而,随着ANN隐层层数的增加,ANN模型训练时间和复杂度指数上升,其发展进入了瓶颈期。
[0007]2006年,机器学习领域庄家Geoffrey Hinton在《Science》发表文章,论证了两个观点:(I)多隐层神经网络具有优异的特征学习能力,学习到的特征对数据有更本质的刻画,从而有利于可视化或分类;
(2)深度神经网络在训练上的难度,可以通过“逐层初始化”来有效克服。
[0008]该论证,不仅解决了神经网络在计算上的难度,同时也说明了深层神经网络在学习上的优异性。因此,具有多个隐藏层的神经网络被称为深度神经网络,基于深度神经网络的学习研究称之为深度学习。另外,随着计算机能力的提高和GPU计算、分布式计算的发展,深度神经网络模型已经可以在可接受时间范围内训练出来。
[0009]卷积神经网络(CNN)作为深度神经网络的一种,已经成为当前语音分析和图像识别领域的研究热门。CNN可以直接从原始图像中识别视觉模式&