spark数据查询语句select_Spark学习之Spark SQL

本文详细介绍了Spark SQL的基础知识,包括DataFrame和Dataset的概念,以及如何从不同数据源创建DataFrame。通过案例展示了如何使用Spark SQL进行数据查询、操作和优化,如查询员工信息、创建临时视图、全局临时视图、使用SQL语句操作DataFrame,以及DataFrame的性能优化技巧。此外,还讨论了如何在IDEA中开发Spark SQL程序,包括指定Schema和使用case class。
摘要由CSDN通过智能技术生成

Spark SQL

一、Spark SQL基础

1、Spark SQL简介

Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL

为什么要学习Spark SQL?我们已经学习了Hive,它是将Hive SQL转换成MapReduce然后提交到集群上执行,大大简化了编写MapReduce的程序的复杂性,由于MapReduce这种计算模型执行效率比较慢。所以Spark SQL的应运而生,它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!同时Spark SQL也支持从Hive中读取数据。

Spark SQL的特点:

1.容易整合(集成)

2.统一的数据访问方式

3.兼容Hive

4.标准的数据连接

2、基本概念:Datasets和DataFrames

DataFrame

DataFrame是组织成命名列的数据集。它在概念上等同于关系数据库中的表,但在底层具有更丰富的优化。DataFrames可以从各种来源构建,

例如:

结构化数据文件

hive中的表

外部数据库或现有RDDs

DataFrame API支持的语言有Scala,Java,Python和R。

从上图可以看出,DataFrame多了数据的结构信息,即schema。RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化

Datasets

Dataset是数据的分布式集合。Dataset是在Spark 1.6中添加的一个新接口,是DataFrame之上更高一级的抽象。它提供了RDD的优点(强类型化,使用强大的lambda函数的能力)以及Spark SQL优化后的执行引擎的优点。一个Dataset可以从JVM对象构造,然后使用函数转换(map,flatMap,filter等)去操作。Dataset API支持Scala和Java。Python不支持Dataset API。

3、测试数据

使用员工表的数据,并已经将其保存到了HDFS上。

emp.csv

dept.csv

4、创建DataFrames

(*)通过Case Class创建DataFrames

① 定义case class(相当于表的结构:Schema)

注意:由于mgr和comm列中包含null值,简单起见,将对应的case class类型定义为String

② 将HDFS上的数据读入RDD,并将RDD与case Class关联

 

③ 将RDD转换成DataFrames

④ 通过DataFrames查询数据

(*)使用SparkSession

① 什么是SparkSession

Apache Spark 2.0引入了SparkSession,其为用户提供了一个统一的切入点来使用Spark的各项功能,并且允许用户通过它调用DataFrame和Dataset相关API来编写Spark程序。最重要的是,它减少了用户需要了解的一些概念,使得我们可以很容易地与Spark交互。

在2.0版本之前,与Spark交互之前必须先创建SparkConf和SparkContext。然而在Spark 2.0中,我们可以通过SparkSession来实现同样的功能,而不需要显式地创建SparkConf, SparkContext以及SQLContext,因为这些对象已经封装在SparkSession中。

② 创建StructType,来定义Schema结构信息

注意,需要:import org.apache.spark.sql.types._

③ 读入数据并且切分数据

④ 将RDD中的数据映射成Row

注意,需要:import org.apache.spark.sql.Row

⑤ 创建DataFrames

val df = spark.createDataFrame(rowRDD,myschema)

再举一个例子,使用JSon文件来创建DataFame

① 源文件:$SPARK_HOME/examples/src/main/resources/people.json

② val df = spark.read.json("源文件")

③ 查看数据和Schema信息

5、DataFrame操作

DataFrame操作也称为无类型的Dataset操作

(*)查询所有的员工姓名

(*)查询所有的员工姓名和薪水,并给薪水加100块钱

(*)查询工资大于2000的员工

(*)求每个部门的员工人数

完整的例子,请参考:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值