自适应卡尔曼滤波的噪声方差怎么推的_卡尔曼滤波器的简单推导

本文介绍了卡尔曼滤波器的简单推导,使用标量进行说明,假设系统无输入。通过状态转换和观测值估计,得出误差方差的递推表达式,并求解最优卡尔曼增益,以最小化误差方差。
摘要由CSDN通过智能技术生成

[首发:cnblogs    作者:byeyear    Email:byeyear@hotmail.com]

本文将简单推导卡尔曼滤波器的预测和更新公式。为了简单,使用标量(一维向量)而不是多维向量,并且假设系统没有输入。

系统状态的理论值如下:

$x_k=\Phi_k x_{k-1}+w_k$

但是由于过程噪声和观测噪声的存在,系统状态的真实值是不可知的。但我们仍可以根据以下思路,尽量跟踪真实值:

1) 状态转换系数是已知的,因此我们可以根据上一状态得到当前状态的先验估计:

$\hat{x}_k^-=\Phi_k \hat{x}_{k-1}$

2) 将对当前状态的先验估计$\hat{x}_k^-$变换到对输出的先验估计$H\hat{x}_k^-$,求出观测值和先验估计值之间的差:

$\tilde{y}_k=z_k-H\hat{x}_k^-=z_k-H\Phi\hat{x}_{k-1}$

3) 将上一步的差乘上一个系数,作为对先验估计的修正,得到当前状态的后验估计:

$\hat{x}_k=\Phi_k\hat{x}_{k-1}+K_k(z_k-H\Phi_k\hat{x}_{k-1})$

我们的目标是求出上式的系数$K_k$,以使得误差$\tilde{x}_k=x_k-\hat{x}_k$的方差最小。

观测值可以表示为真实输出与观测噪声的叠加:

$z_k=Hx_k+v_k$

于是误差$\tilde{x}_k$可以表示为如下形式(消去了$z_k$和$x_k^-$):

$\tilde{x}_k=x_k-\Phi\hat{x}_{k-1}-K_k(Hx_k+v_k-H\Phi_k\hat{x}_{k-1})$

还可以进一步消去$x_k$:

$\tilde{x}_k=\Phi_k x_{k-1} + w_k - \Phi_k \hat{x}_{k-1} - K_k(H\Phi_k x_{k-1} + Hw_k +v_k - H\Phi_k \hat{x}_{k-1})$

上式中,项$x_{k-1}$和$\hat{x}_{k-1}$可以合并,并使用下式进行替换:

$\tilde{x}_{k-1}=x_{k-1}-\hat{x}_{k-1}$

于是我们得到:

$\tilde{x}_k=(1-K_kH)\tilde{x}_{k-1}\Phi_k+ (1-K_kH)w_k-K_kv_k$

这样我们就得到了$\tilde{x}_k$递推表达式。

卡尔曼滤波器认为系统状态、过程噪声和观测噪声互不相关。将过程噪声和观测噪声的协方差分别记作$Q_k$和$R_k$,我们就可以得到误差的方差$P_k$的递推式:

$P_k=E[\tilde{x}^2]=(1-K_kH)^2(P_{k-1}\Phi_k^2+Q_k)+K_k^2R_k$

将上式中出现的$P_{k-1}\Phi_k^2+Q_k$记为$P_k^-$,方差可简写为:

$P_k=(1-K_kH)^2P_k^-+k_k^2R_k$

为了使得$P_k$最小,我们将上式对$K_k$求偏导,并令偏导数等于0:

$\frac{\partial P_k}{\partial K_k}=0=2(1-K_kH)P_k^-(-H)+2K_kR_k$

于是就得到了最优卡尔曼增益:

$K_k=\frac{P_k^-H}{H^2P_k^-+R_k}$

代入$P_k$的表达式,整理后得到:

$P_k=(1-K_kH)P_{k}^-$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值