回归分析预测模型搭建_波士顿房价预测——回归分析案例(献给初学者)

本文是一篇针对初学者的回归分析案例教程,通过使用回归分析预测波士顿地区的房价。作者介绍了如何搭建预测模型,并通过实践帮助读者掌握回归分析的基础语法和应用。
摘要由CSDN通过智能技术生成

b1871f150a35eee3bc8cd111763b65bc.gif

a07f7234ad9d194f708ff4b7001f309b.png

作者Nature

出品AI机器思维

人类生活的现实社会经常遇到分类与预测的问题,目标变量可能受多个因素影响,根据相关系数可以判断影响因子的重要性。 正如一个病人得某种病是多种因素影响造成的。 房价的高低也是受多个因素影响的,如房子所处的城市是一线还是二线,房子周边交通方便程度如通不通地铁,房子周边学校和医院等,这些都影响了房子的价格。 医学领域根据自变量以及某个阈值判断病因归属。 生物领域根据父辈的基因经过回归分析判断对子辈的影响。 今天给大家通过案例讲讲回归分析,回归分析在经济、社会学、医学、生物学等领域得到了广泛的应用,这种技术最早可以追溯到达尔文(Charles Darwin)时期。 达尔文的表弟Francis Galton致力于研究父代豌豆种子尺寸对子代豌豆尺寸的影响,采用了回归分析。 回归分析对人体健康研究也可以重要,病因分析。 19世纪高斯系统地提出最小二乘估计,从而使回归分析得到蓬勃发展。 目前 回归分析的研究范围可以分为如下几个部分组成: 线性回归: 一元线性回归、多元线性回归和多个因变量与多个自变量的回归。 回归诊断: 通过数据推断回归模型基本假设的合理性、基本假设不成立时对数据的修正、回归方程拟合效果的判断以及回归函数形式的选择。 回归变量的选择: 根据什么标准选择自变量和逐步回归分析方法。 参数估计方法: 偏最小二乘回归、主成分回归和岭回归。 非线性回归: 一元非线性回归、分段回归和多元非线性回归。 定性变量的回归: 因变量含有定性变量和自变量含有定性变量。 现实中常用的回归分
  • 6
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值