1.正项级数审敛法
设与为正项级数,- 正项级数收敛的充分必要条件是其部分和序列有界.
- 比较判别法:若(),则
- 若级数收敛,且则级数收敛;
- 若级数发散,且则级数发散.
「注意」
- 若分母,分子关于的最高次数分别为,则
- 若当时,则与具有相同敛散性.
- 当时,,后者较前者趋于的速度快.
2.两个重要级数
- 几何级数
- 级数
3.比值/根值判别法
4.积分判别法
若 在 上非负单调连续,则 与 具有相同敛散性.5.任意项级数
- 交错级数判别法:
则收敛,且其和,余项.
❝常用递减的判别
❞
- ;
- ;
- ,.
- 任意项级数判别法(符号不定)
典型例题
1.设级数 收敛,则必收敛的级数为( ).(A)
(B)
(C)
(D)
「解析」法一 直接法
由 收敛知 也收敛.由收敛级数的性质(如果级数 、 分别收敛于 、 ,则级数 也收敛,且其和为 )知 .选项成立.
法二 间接法(找反例)
(A)取,级数收敛,但是发散的;关于上述级数的敛散,有下述结果:
(B)取,级数收敛,发散.
(C)取,级数收敛,但由比较审敛法的极限形式知,级数发散.
2.设 ,则级数( ).(A)与都收敛
(B)与都发散
(C)收敛而发散
(D)发散而收敛
「解析」这是讨论与敛散性的问题.是交错级数,显然单调下降趋于零,由莱布尼兹判别法知,该级数收敛.
正项级数 中, . 根据正项级数的比较判别法以及 发散 发散.因此此题应选(C).3.级数 (常数 )( ).(A) 发散
(B) 条件收敛
(C) 绝对收敛
(D) 收敛性与有关
「解析」对原级数的通项取绝对值后,再利用等价无穷小
又因为级数:当时收敛;当时发散. 所以有 收敛 收敛.所以原级数绝对收敛,应选(C).「注」对于正项级数,确定无穷小关于的阶(即与级数作比较)是判断它的敛散性的一个常用方法.该题用的就是这个方法.
往期回顾
在家学|2019-2020第二学期高等数学期末考试练习题
在家学|全微分的定义,可微与极限存在、连续性的关系及方向导数
在家学|曲面切平面存在的条件, 曲线的切线
在家学|多元函数的极值,最值和条件极值
在家学|隐函数、多元复合函数求导法则
在家学|累次积分与重积分的计算
在家学|第一类曲线积分与第二类曲线积分的计算
在家学|第一类曲面积分与第二类曲面积分的计算
在家学|各积分的对称性
在家学|格林公式、高斯公式、斯托克斯公式
在家学|全微分方程的通解
资料来源:北洋数学研究社·学研部