定积分及其应用知识点总结_高中定积分知识点总结

本文是对高中数学中定积分的知识点进行的详细总结,涵盖了导数概念、常见导数与定积分运算公式、求单调区间的方法、极值判断以及定积分的物理意义。此外,还探讨了归纳推理在数学推理中的角色,强调了归纳推理得出的结论需经过验证的重要性。
摘要由CSDN通过智能技术生成

高中定积分知识点总结

【篇一:高中定积分知识点总结】

数学选修

2-2

知识点总结

1

:其中

?x

是自变量的改变量,可正,

可负,可零。

2

、导函数的概念

:

函数

y?f(x)

x?x0

处的瞬时变化率是

lim x0

处可

导,并把这个极限叫做

x0

处的导数,记作

f (x0)

3.

函数的平均

变化率的几何意义是割线的斜率;函数的

导数的几何意义是切线的

斜率。

6

、常见的导数和定积分运算公式

:

f?x?

g?x?

均可导(可积),

则有:

用导数求函数单调区间的步骤

:

求函数

f(x)

的导数

f (x)

f

(x)0,

解不等式,得

x

的范围就是递增区间

.

f (x) 0,

解不等式,得

x

的范围,就是递减区间;

[

]

:求单调区间之前一定要先看原函数的

定义域。

求函数

f(x)

的导数

f (x) (3)

求方程

f (x)=0

用函数的导数为

0

的点,顺

次将函数的定义区间分成

若干小开区间,并列成表格,检查

f/(x)

方程根左右的值的

符号,如果左正右负,那么

f(x)

在这个根处取得

极大值;如

果左负右正,那么

f(x)

在这个根处取得极小值;如果左

右不改变符号,那么

f(x)

在这个根处无极值

f(a),f(b)

比较,其中最大

的一个是最大值,最小的一个是最小值。

[

]

:实际问题的开区间唯

极值点就是所求的最值点;

根据定积分的定义,不难得出定积分

的如下性质:性质

11

定积分的取值情况

:

定积分的值可能取正值,也

可能取

负值,还可能是

0.

轴上方时,定积分的值取正值,且等于

x

轴上方的图形面积;

轴下方时,定积分的值取负值,且等于

x

轴上

方图形面积的相反数;

12

.物理中常用的微积分知识(

1

)速度的导

数为加速度。(

2

)力的积分为功。

13.

归纳推理的定义:从个别事实中推演出一般性的结论,

像这样的

推理通常称为归纳推理。

.......归纳推理是由

部分到整体,由个别到一般的推理。

归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未

知的一般现象。

由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过

逻辑证明和实验检验,因此,它不能作为数学

证明的工具。

归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作

为进一步研究的起点,帮助人们发现问题和提出

问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值