高中定积分知识点总结
【篇一:高中定积分知识点总结】
数学选修
2-2
知识点总结
注
1
:其中
?x
是自变量的改变量,可正,
可负,可零。
2
、导函数的概念
:
函数
y?f(x)
在
x?x0
处的瞬时变化率是
lim x0
处可
导,并把这个极限叫做
在
x0
处的导数,记作
f (x0)
或
3.
函数的平均
变化率的几何意义是割线的斜率;函数的
导数的几何意义是切线的
斜率。
6
、常见的导数和定积分运算公式
:
若
f?x?
,
g?x?
均可导(可积),
则有:
用导数求函数单调区间的步骤
:
求函数
f(x)
的导数
f (x)
令
f
(x)0,
解不等式,得
x
的范围就是递增区间
.
令
f (x) 0,
解不等式,得
x
的范围,就是递减区间;
[
注
]
:求单调区间之前一定要先看原函数的
定义域。
求函数
f(x)
的导数
f (x) (3)
求方程
f (x)=0
用函数的导数为
0
的点,顺
次将函数的定义区间分成
若干小开区间,并列成表格,检查
f/(x)
在
方程根左右的值的
符号,如果左正右负,那么
f(x)
在这个根处取得
极大值;如
果左负右正,那么
f(x)
在这个根处取得极小值;如果左
右不改变符号,那么
f(x)
在这个根处无极值
f(a),f(b)
比较,其中最大
的一个是最大值,最小的一个是最小值。
[
注
]
:实际问题的开区间唯
一
极值点就是所求的最值点;
根据定积分的定义,不难得出定积分
的如下性质:性质
11
定积分的取值情况
:
定积分的值可能取正值,也
可能取
负值,还可能是
0.
轴上方时,定积分的值取正值,且等于
x
轴上方的图形面积;
轴下方时,定积分的值取负值,且等于
x
轴上
方图形面积的相反数;
12
.物理中常用的微积分知识(
1
)速度的导
数为加速度。(
2
)力的积分为功。
13.
归纳推理的定义:从个别事实中推演出一般性的结论,
像这样的
推理通常称为归纳推理。
.......归纳推理是由
部分到整体,由个别到一般的推理。
归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未
知的一般现象。
由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过
逻辑证明和实验检验,因此,它不能作为数学
证明的工具。
归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作
为进一步研究的起点,帮助人们发现问题和提出
问题。