深度学习多卡配置_RTX 3080深度学习环境配置

本文记录了使用RTX 3080进行深度学习环境配置的过程,包括Nvidia驱动455的安装、CUDA 11.1与cudnn 8.0.4的conda安装,以及Pytorch夜间版本的配置。通过详细步骤和常见问题解答,帮助读者避免配置过程中的坑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

找资料的时候感觉现在写30XX系显卡深度学习环境配置的文章还不太完善,所以记录了自己的采坑经历。

Why?

下面这张图非常直观,TITAN性能比2080ti强,3080的CUDA核心数差不多是TITAN的两倍,内存少一些。目前3080显卡7000出头可以拿下,性价比非常不错。

225a1aeab4b8fa780b0e5d5e3eb2a9bf.png

1 准备工作

上半年配了台支持4GPU的机器,原计划下半年训练任务上来以后再加卡。但是30XX显卡出来以后,2个3080理论上和4个2080ti性能差不多,现在再加2080ti就非常不理智了。所以拆了2080ti,买了两个技嘉GeForce RTX™ 3080 GAMING OC 10G。

机器的硬件配置:

cpu:i9 10900x

主板:华硕PRIME X299-DELUXE Ⅱ

内存:16G * 4

电源:1600w

显卡:技嘉3080 GAMING O10G * 2

这套配置换3080有很多问题,性价比极低&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值