mosse matlab,基于高置信度更新策略的高速相关滤波跟踪算法

3.2 定量比较

除了OPE模式, 还有文献[

为了进一步分析所提算法在不同挑战因素下的跟踪性能, 将各算法在11种不同属性的视频序列集合上分别进行测试(每组视频序列对应多个不同的属性)。这些属性包括:含38组序列的光照变化(IV)属性、含65组序列的尺度变化(SV)属性、含49组序列的遮挡(OCC)属性、含44组序列的形变(DEF)属性、含31组序列的运动模糊(MB)属性、含42组序列的快速运动(FM)属性、含50组序列的平面内旋转(IPR)属性、含64组序列的平面外旋转(OPR)属性、含14组序列的运动出视野(OV)属性、含31组序列的背景繁杂(BC)属性和含10组序列的低分辨率(LR)属性。对OPE模式下运行的精度图和成功图数据进行归纳, 跟踪结果如表1和表2所示, 其中加粗的数据表示单个属性下的最优结果。

由表1和表2可知:所提算法在尺度变化、遮挡、形变、运动模糊、平面外旋转、运动出视野和低分辨率共7个属性的精度图和成功图中均取得了最优的跟踪结果。相比于排名第2的fDSST算法, 在尺度变化属性方面, 所提算法在减少尺度更新次数的情况下取得了更好的效果, 说明所提算法通过高置信度更新策略去除冗余尺度更新操作的做法是切实有效的; 在遮挡、形变、运动出视野、低分辨率等属性方面, 所提算法具有明显优势, 其中遮挡属性的精度图和成功图分别提升了5.61%和5.2%, 形变属性的精度图和成功图分别提升了4.27%和3.77%, 运动出视野属性的精度图和成功图分别提升了3.98%和4.08%, 低分辨率属性的精度图和成功图分别提升了4.91%和5.21%, 说明所提算法只有在满足高置信度条件下才更新滤波器模型的处理方式, 能够提升跟踪算法的抗干扰性。另外, 所提算法在其余4个属性条件下取得了次优的跟踪结果(光照变化和平面内旋转两个属性的精度图结果除外)。总体来说, 所提算法在各种复杂的跟踪场景下具有更好的稳健性, 尤其是对于目标被遮挡等情况具有更好的适应性。

图5

Fig. 5 6877c3b972857729aa080da2bbfb2636.png

图5 各算法在100组视频序列上的跟踪结果。(a) OPE模式下的精度图; (b) OPE模式下的成功图; (c) SRE模式下的精度图; (d) SRE模式下的成功图; (e) TRE模式下的精度图; (f) TRE模式下的成功图Fig. 5 Tracking results of different algorithms on 100 video sequences. (a) Precision plot obtained at OPE mode; (b) success plot obtained at OPE mode; (c) precision plot obtained at SRE mode; (d) success plot obtained at SRE mode; (e) precision plot obtained at TRE mode; (f) success plot obtained at TRE mode

表1

Table 1

Precision plot values correspond to different algorithms which are used to test sets of video sequences with different attributes at OPE mode%

Table 1fd67d07262bcb3fd965adb2160e7666e.gif表1 OPE模式下各算法对不同属性的视频序列集合进行测试后得到的精度图数据      Table 1 Precision plot values correspond to different algorithms which are used to test sets of video sequences with different attributes at OPE mode%

表1OPE模式下各算法对不同属性的视频序列集合进行测试后得到的精度图数据Table 1Precision plot values correspond to different algorithms which are used to test sets of video sequences with different attributes at OPE mode%TrackerIVSVOCCDEFMBFMIPROPROVBCLRProposed66.7064.7364.0760.9966.7663.7563.7863.7557.2765.4964.19

fDSST68.3962.8258.4656.7264.8264.2367.2461.6053.2971.1359.28

DSST68.0161.7256.8953.2056.8555.0464.4561.1546.2964.5456.62

SWCF67.0261.3558.3753.7155.8252.1263.1459.8845.2163.0853.89

CN54.2851.0751.4450.1645.7046.3060.3857.1442.8457.0647.01

CFLB37.0544.1641.0239.5639.9240.0945.2941.7733.7438.4455.62

CSK47.2944.9242.0142.5436.5238.9948.9947.1327.6652.7241.06

KCF64.2058.5658.1356.8456.4057.5263.2461.7447.9164.5851.14

表2

Table 2

Success plot values correspond to different algorithms which are used to test sets of video sequences with different attributes at OPE mode%

Table 2fd67d07262bcb3fd965adb2160e7666e.gif表2 OPE模式下各算法对不同属性的视频序列集合进行测试后得到的成功图数据      Table 2 Success plot values correspond to different algorithms which are used to test sets of video sequences with different attributes at OPE mode%

表2OPE模式下各算法对不同属性的视频序列集合进行测试后得到的成功图数据Table 2Success plot values correspond to different algorithms which are used to test sets of video sequences with different attributes at OPE mode%TrackerIVSVOCCDEFMBFMIPROPROVBCLRProposed56.5852.4853.5650.5458.6754.4452.2051.7949.8455.0949.82

fDSST56.7851.0848.3646.7756.3055.4955.0050.1745.7658.5844.61

DSST56.1148.5946.1043.4349.2047.1051.0048.2838.4852.4038.94

SWCF55.2948.0846.7043.4348.3544.8349.9847.1837.8851.0136.82

CN41.5535.9439.6339.6137.8537.7645.4942.1035.0843.8829.45

CFLB29.6332.8431.3031.4934.6934.2835.2031.6627.5831.9635.64

CSK36.8532.3933.1333.7031.3932.6338.0535.3924.9641.0026.33

KCF47.9239.8644.3043.6245.5644.8447.2245.1239.3349.7730.69

表3所示为所提算法在不同阶段的性能评估结果(在100组视频序列上以OPE模式运行), 其中Proposed(NDR & NHU)表示既不使用高置信度更新策略, 也不使用特征降维的方法。由 表3可知, 所提算法在各阶段的测试中跟踪准确性稳步提升, 平均跟踪速度得到了成倍提升, 验证了所提算法采用特征降维和高置信度更新等加速方法的有效性。

表3

Table 3

Performance evaluation of proposed algorithm in different stages at OPE mode

Table 3fd67d07262bcb3fd965adb2160e7666e.gif表3 OPE模式下所提算法在不同阶段的性能评估      Table 3 Performance evaluation of proposed algorithm in different stages at OPE mode

表3OPE模式下所提算法在不同阶段的性能评估Table 3Performance evaluation of proposed algorithm in different stages at OPE modeTrackerScore on precision plot /%Score on success plot /%Average speed /(frame·s-1)Proposed (NDR & NHU)64.0152.1637.6

Proposed (NHU)66.2254.4088.1

Proposed68.6156.81122.3

表4所示为包括本课题组所提算法在内的8种实时性较好的在线跟踪算法的平均跟踪速度(实测均大于20 frame/s), 可知:跟踪速度大于100 frame/s的高速跟踪算法包括所提算法、fDSST、CFLB、CSK和KCF共5种算法; 所提算法的跟踪速度为122.3 frame/s, 与fDSST算法102.2 frame/s的跟踪速度相比, 提升了约20%, 其他4种高速跟踪算法虽然运行更快, 但整体性能均与所提算法存在较大差距。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值