arima模型的建模步骤_ARIMAX模型应用详细案例-预测GDP变化

本文介绍了ARIMAX模型的数学原理、建立步骤,并通过1980年至2005年的GDP数据,详细阐述了预处理、平稳性检验和建模过程,包括ADF检验、ARMA模型拟合及预测评估,适用于时间序列分析的实践应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前没学过ARIMAX模型,这主要是[1]的学习笔记。这篇论文是2007年的了,可能有点旧。可是目前没找到ARMA模型、ARIMA模型的新发展,可能是叫别的模型吧(⊙﹏⊙)

当ARIMA模型包括其它时间序列作为输入变量时,被称为传递函数模型(transfer function model)、多变量时间序列模型(multivariate time series model)、ARIMAX模型或Box-Tiao模型。传递函数模型是ARIMA模型的自然推广,Pankratz统称这种包含其它时间序列作为输入变量的ARIMA模型为动态回归。 [2]

《时间序列分析与SAS应用》(肖枝洪)[3]对传递函数模型(也就是ARIMAX模型)如何在SAS应用有详细介绍。

1 ARIMAX模型的数学原理

14456499fe6c93fdae1c7dae49c322ad.png

16f48e6fe848ebf3a822a0f3a917a4e0.png

2 ARIMAX模型的建立步骤

55ef12240f43f058e1d0df0d5652704c.png
ARIMAX模型的步骤

3 ARIMAX模型预测GDP变动

3.1 数据预处理

1980年-2005年的固定资产投资总额、第三产业产值和GDP对数处理(lnx),

3.2 平稳性检验

先看下三列对数处理后的时间序列趋势,以及一阶拆分后的趋势。

1c60f2ab0c6da93d54493de0924bb5d2.png
一阶拆分可能平稳

用SAS软件做ADF检验。*这里可以学下怎么看单位根检验结果。

b1c918ad313d2a2363b49777eb96c9d6.png
固定资产投资时间序列的单位根检验

c96e20f414b5e57b0c98db137c55f761.png

3.3 建模

(1)对输入变量时间序列做ARMA模型

ac4c91bb66876193835f82d2f0b5a4ab.png
输入变量的ARMA建模

建模后获取白噪声序列,用同样的模型拟合响应序列(GDP)数据,保留白噪声残差序列。

(2)预白噪声处理

自相关是一个数列平移一段距离后,与原数列的相关程度。特殊情况下,对于周期性的数列,平移一个周期后,与原序列的相关程度接近1.

互相关则是另一个数列平移一段距离后,与某个数列的相关程度。可以考察序列1与序列2的滞后相关性。

4468bdb7b940612f7de8c5ca70c44429.png

ceac1b500dbe07276b46b513287553ea.png

1ba892fa389d8113cc15ccd83c3cb13c.png

(3)最终模型

35ebe572e24c07051ba1ed2e271c32c3.png

(4)预测和评估

fb2aabce6f21679b2e800d58a96aa07c.png

eb55960908bfa53e934283693049a898.png

题外:如何在SAS实现[3][4]

参考

  1. ^汪远征, 徐雅静. 多元平稳时间序列 ARIMAX 模型的应用[J]. 統計與決策, 2007, 2007(9B): 132-134.
  2. ^景立伟. 传递函数模型及其在医院业务收入分析中的应用[D]. 山西医科大学, 2006.
  3. ^ab肖枝洪, 郭明月. 时间序列分析与 SAS 应用[M]. 武汉大学出版社, 2012.
  4. ^高惠旋SAS+ETS使用手册
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值