圆锥曲线万能弦长公式_圆锥曲线11大常考题型&近5年真题汇总,想提分就赶紧收藏!...

或许,这就是数学的魅力吧,只需一二定理,三四公式,就可以命制出成百上千道不同的题目。

本文汇总了圆锥曲线11大常考题型,当然,最最重要的当属题型十一:存在性问题,一起来看~

圆锥曲线11大常考题型如下

题型一:数形结合确定直线和圆锥曲线的位置关系

题型二:弦的垂直平分线问题

题型三:动弦过定点的问题

题型四:过已知曲线上定点的弦的问题

题型五:共线向量问题

题型六:面积问题

题型七:弦或弦长为定值问题

题型八:角度问题

题型九:四点共线问题

题型十:范围问题(本质是函数问题)

题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)

题型

3811de0d093fce11c5f5850c62c524b9.png

题型一:数形结合确定直线和圆锥曲线的位置关系

101b20c8326641bf68a5f43eeb3cb4b0.png
4fb61ac6677253ac71d4e91e3c3ef606.png

题型二:弦的垂直平分线问题

a79b2f3b0021243e3f1b58468092b4d4.png

题型三:动弦过定点的问题

5466c34997e7bc87fcffd66f6abad0cc.png
6b03810c1d2539ffe91a05e52ddca52f.png

题型四:过已知曲线上定点的弦的问题

782ada82f58f49eee9a31a30f12478dd.png
7f3fd76678f12b9b82fa5ee1e117f708.png

题型五:共线向量问题

7e33cad9f5bd4da246a7383f1fd79ac9.png

题型六:面积问题

b328c3cfeea47be60ab539ab202f7ec6.png
68a72429f35916040f3c2b7aa940b537.png

题型七:弦或弦长为定值问题

f27a4e2f54cabb79a65d14c316ffc464.png
1d7ea32fe1a71eb34343386c7268b705.png
04627c8494c08f7395f707e8f0b460fa.png

题型八:角度问题

9ee9e48204555d9ed7e6a2a876a7e617.png

题型九:四点共线问题

826f11a4cf0c64db841e73f2f5f89911.png
a3eeb046e54417fcf3a648f308957939.png
f39c32089d3b73e566d69db257cb0cff.png

题型十:范围问题(本质是函数问题)

08d2c72d892f61268163552a522822ec.png
6db287d636bbfa1195c1f06bbc5e21fc.png

题型十一:存在性问题(存在点、直线y=kx+b、实数、圆形、三角形、四边形等)

举例

例1:

dbee4cef842b53fcd72517848cc637c0.png
27f737b8c27f73ecfcfaf4d588d6c59c.png
9536591bae64610ab473d6041a8d29ce.png

例2:

c7a84dc1bb06385edf8ce84f0a8ffa1c.png
278c8dfbcdc3bdee887311f80b37214c.png
440a1c6e54134d12427ca991c1a460dc.png

例3:

0c1325ce1e4e19d050ce7305f08366c5.png
b97c9470ae3607e1c1827eafe553839e.png
5d4fbf7bb9301faf9c2f44564cde5e29.png
9788ce057428413cf6594dd3a9d846fd.png

例4:

5bb296637fc1c003c4f30fc77ec64886.png
ce0ffb3ec7700fe9a796ac7f0d5423ca.png
22d85b468f3d5d7d0a2fac60c317c52e.png

例5:

390cc783cdeb36344b5dfcb074c9b1c7.png
cdca978ff9784f7eeddc44993b803ac4.png
cc55b3877613bf708e88a74ba8cc4019.png
dd2dcd6fc3c56bf4102c9b45532e4241.png
0d204db038545ea764eed58fa8532fad.png
bb79c64b7b0b005d698f0eab46c9ccbd.png

例6:

7c91f780383368fdffd93eb1c7137899.png
ddfedcdf642176536f89fe39e3f80819.png
81c759fb4cf48ac9b1d7c6069a20f696.png
0f7cb576b56d270649d3702cf41e224b.png

刷有所得:确定圆的方程方法

(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程。

(2)待定系数法

①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;

②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值。

例7:

5ed8bf32f4fbe1af5c2df6c58aeccdf9.png

答案:

5c26c89c722026d1178208a3de9acf32.png

解析:

f65fe9db1ffaac5dfb74f6098b383868.png
40ec024abb9c1cdf0f6b2fa20e600a2f.png

刷有所得:该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.

例8:

a8285391679906cb7917b234b6f04bf7.png

解析:

f33726cb85b8e2733ea57d118a7957db.png
c60c8b6c9af75942c2aa00c76d0b933f.png
8acfe4f4d8b53b945bb546d627ffbd12.png

定点问题

例9:

a8c75aee6f0b09d42367eb6ca29d5e17.png

解析:

67c316d5724dfb3fdf2751068809c340.png
77e4f22faeae61a5c2318863d56c07f6.png
a29fe38148895428ffc4f4d1568d47c7.png

例10:

5693f650d5709cc5dfbbd729a54c52d7.png
5eb103dcbc076dc4cfc83eb5bee4b8fd.png

例11:

7f4b0cfc00d193d072b1a8a00452d02e.png

解析:

8b198dbf32f5e7c227cc24347956caef.png
0b6996fe50506b8b32f32a3548663b9f.png

例12:

f03a7a44891b30668a4a826800919f8b.png
c4c004db34529510cb4d9500786b52e1.png

例13:

a762d432561eca451d2961524c057cd0.png

答案:

71c0b54d6f280bb5ecf28e59438a56b0.png
4a73a29982471a8b30300e83874abb28.png
4730ecad01693bcdaec5162cebf77abb.png

例14:

bf0d7be2019823865b1787ea25c08dfe.png
bf91c5872ef8a3c0de3c7fb28294f646.png

例15:

3021def85b5efebd2fd207ec9928daf2.png

解析:

ec301ba20436d1611054a42e92c3847b.png
43d35cd6303b752b47336c8d4f8d9c0d.png

离心率问题

例16:

e40af003868494088bb56e750d8ba2a6.png

答案:D

解析:

f7942745d913fc9562e66ccce1d935f2.png

刷有所得:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.

例17:

109f69215916a4c99d7f3eee399cad43.png

答案:C

解析:

d5b8162a990175e385e9b9b21abfc3ee.png

例18:

1d15ae050381c420fc0fecdba02b569f.png

答案:C

解析:

2fcd5b59e50b8e89a0c7fa18cab593c5.png

刷有所得:求离心率的值或范围就是找的值或关系。由想到点M的轨迹为以原点为圆心,半径为的圆。再由点M在椭圆的内部,可得,因为 。所以由得,由关系求离心率的范围。

例19:

c45ecf87b8162624ec7edaf59588352a.png

答案:A

解析:

8f75382ae39a6506cdf7dfbf96379ea0.png

刷有所得:本题主要考查椭圆的定义及离心率以及双曲线的定义及离心率,属于中档题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.

例20:

444dc8c1442152af8d599e6d87a996cb.png

答案:D

解析:

ab4f2a67e27ed4b66cf3c40962952198.png

例21:

57ecaee57ac498dd3076113e9bde7fca.png

答案:A

解析:

f16e13cd865d4534933c0b70d17d8ef0.png

刷有所得:解决椭圆和双曲线的离心率的求值及取值范围问题,其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.

例22:

d1afcdbbc0d83e47f465e55f40a9be13.png

答案:A

解析:

8084b5cd768dc97cf89139fb6baa6a92.png

刷有所得:

d53568afbe239a12e1ff356edf45e9c5.png

例23:

462375abb385a7410092eaf31936c8b8.png

答案:A

解析:

b5c54d4f92d098b9dfe8e01e11e4f360.png

例24:

6244bd82059d452daab7521932682fe9.png

例25:

812e94b7ee54bb93cbcf16114b2b8dbe.png

例26:

148e3a5d15c7a2787adf721d1fbcc4ec.png

答案:C

解析:

4fd1b485df69c9955f84459061a447b3.png
1edd666a8e74d4ae31c10faca2ccb884.png

例27:

b6b284302a970562a996cf9f6cc53e40.png

例28:

564f1abdd23aa6525ecba2b0d96e707c.png

答案:C

解析:

359c86f48b1b08c31647bb0c3edece6a.png

例29:

760be16db6e153fec149c50d1c17033d.png

例30:

4fdd033e731426ed014c375778620021.png

答案:D

解析:

376dd6021a4b152904c55f6acc21aa38.png

例31:

0a86389115369eb17086116239664417.png

例32:

a796081feccc526d3d65ff81fcdf29a6.png

例33:

c1154bc471f9e5d75e2c0f0d047a8ca7.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值