numpy矩阵严格是二维的,而numpy数组(ndarrays)是N维的。矩阵对象是ndarray的子类,因此它们继承了ndarray的所有属性和方法。
numpy矩阵的主要优点是它们为矩阵乘法提供了一种方便的表示法:如果a和b是矩阵,则a * b是它们的矩阵乘积。
import numpy as np
a=np.mat('4 3; 2 1') b=np.mat('1 2; 3 4') print(a)
[[4 3]
[2 1]]
print(b)
[[1 2]
[3 4]]
print(a*b)
[[13 20]
[ 5 8]]
另一方面,从Python 3.5开始,NumPy使用@运算符支持中缀矩阵乘法,因此您可以在Python> = 3.5中使用ndarrays实现相同的矩阵乘法便利。
import numpy as np
a=np.array([[4, 3], [2, 1]]) b=np.array([[1, 2], [3, 4]]) print(a@b)
[[13 20]
[ 5 8]]
矩阵对象和ndarray都.T必须返回转置,但是矩阵对象也必须具有.H共轭转置和.I逆。
相反,numpy数组始终遵守以元素为单位应用操作的规则(除了new @运算符)。因此,如果a和b是numpy数组,则a*b该数组是通过按元素逐个乘以组成的:
c=np.array([[4, 3], [2, 1]]) d=np.array([[1, 2], [3, 4]]) print(c*d)
[[4 6]
[6 4]]
要获得矩阵乘法的结果,请使用np.dot(或@在Python> = 3.5中,如上所示):
print(np.dot(c,d))
[[13 20]
[ 5 8]]
该**运营商还表现不同:
print(a**2)
[[22 15]
[10 7]]
print(c**2)
[[16 9]
[ 4 1]]
由于a是矩阵,所以a2返回矩阵乘积a*a。由于c是ndarray,因此c2返回一个ndarray,每个组件的元素均平方。
矩阵对象和ndarray之间还有其他技术区别(与np.ravel,项目选择和序列行为有关)。
numpy数组的主要优点是它们比二维矩阵更通用。当您需要3维数组时会发生什么?然后,您必须使用ndarray,而不是矩阵对象。因此,学习使用矩阵对象的工作量更大-您必须学习矩阵对象操作和ndarray操作。
编写同时使用矩阵和数组的程序会使您的生活变得困难,因为您必须跟踪变量是什么类型的对象,以免乘法返回意外的结果。
相反,如果仅使用ndarray,则可以执行矩阵对象可以执行的所有操作,以及更多操作,但功能/符号略有不同。
如果您愿意放弃NumPy矩阵产品表示法的视觉吸引力(使用python> = 3.5的ndarrays几乎可以优雅地实现),那么我认为NumPy数组绝对是可行的方法。
PS。当然,您真的不必以牺牲另一个为代价来选择一个,因为np.asmatrix并np.asarray允许您将一个转换为另一个(只要数组是二维的)。
问题来源于stack overflow