题目描述
在 N * N
的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1
立方体。
每个值 v = grid[i][j]
表示 v
个正方体叠放在单元格 (i, j)
上。
现在,我们查看这些立方体在 xy、yz 和 zx 平面上的投影。
投影就像影子,将三维形体映射到一个二维平面上。
在这里,从顶部、前面和侧面看立方体时,我们会看到“影子”。
返回所有三个投影的总面积。
示例 1:
输入:[[2]] 输出:5
示例 2:
输入:[[1,2],[3,4]] 输出:17 解释: 这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。
示例 3:
输入:[[1,0],[0,2]] 输出:8
示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]] 输出:14
示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]] 输出:21
提示:
1 <= grid.length = grid[0].length <= 50
0 <= grid[i][j] <= 50
解题思路
int projectionArea(vector<vector<int>>& grid) {
int N = grid.size();
int rsum = 0,csum = 0,up = 0,ans = 0;
for(int i=0;i<N;i++){
int rmax = 0,cmax = 0;
for(int j=0;j<N;j++){
if(grid[i][j] != 0) up++;
rmax = max(rmax,grid[i][j]);
cmax = max(cmax,grid[j][i]);
}
rsum += rmax;
csum += cmax;
}
return (rsum+csum+up);
}