剔除异常值栅格计算器_GraphPad Prism 统计指南 | 关于异常值(Outlier),你真的了解吗?...

本文探讨异常值的概念,分析异常值产生的原因,指出何时需要剔除异常值,并介绍Prism软件如何帮助处理异常值,强调异常值可能是有价值的数据点,提醒在剔除前需深思熟虑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2132741760cab72c3c6b628a502fe50d.png

什么是异常值?

在我们分析数据时,有时会发现一个值与其他值相差甚远。这类值称为 “异常值”,通常来说这个术语没有严格定义。在Prism的非线性回归中,异常值是远离稳健回归定义的最佳拟合曲线的点。

为什么会产生异常值?你需要先思考…

当你遇到异常值时,先不要急着把它从分析中删掉。可以先尝试问自己如下↓问题:

1)输入到计算机的值是否正确?如果是数据输入有误,先修正;

2)试验是否存在问题?比如,如果你注意到一根试管中的样本看起来很有趣,你可以用它作为排除该试管中样本所产生的值的理由,而无需执行任何计算;

3)是否由生物多样性引起的?如果每个值是来自不同的人或动物,那么异常值的存在可能是正确的。这类异常值,不是因为试验错误,而是因为那个人的操作可能与其他人不同。这或许是你数据中最令人兴奋的发现!

如果你对以上三个问题的回答均为“否”,那么还有两种可能:

4)异常值是由于偶然因素造成的。在此情况下,你应在分析中保留该值。该值与其他值来自相同的分布,因此应包括在内;

5)异常值是因为一个错误造成的。如错误的移液、电压尖峰、过滤器中的孔洞等。由于在分析中包含错误值会使结果无效,此时是需要删除的。也就是说,该值来自于不同于其他值的群体,并且具有误导性。

当然,问题是你永远不能确定这些可能性中哪一个是正确的。

何时需要剔除异常值?

像线性回归一样,非线性回归假设理想曲线周围的数据分散遵循高斯或正态分布。异常值可能违反了这一假设,并使非线性回归结果无效。为处理异常值,Prism提供了自动异常值剔除功能:

  • 何时可以使用自动异常值剔除功能?

我们在做实验的时候难免会出现错误,这时可能会导致错误的值产生--异常值。即使是单个异常值也可能影响平方和计算,并导致误导性的结果。有些同学可能会认为随意剔除异常值是作假行为。其实那种通过特殊方式剔除“异常值” ,特别是只剔除妨碍获得想要结果的异常值时,才是作假行为。另外,留下以供分析的数据中的异常值也是一种作假,因为它可能会产生无效结果。

  • 何时不建议使用自动异常值剔除功能?

1. 拟合错误模型时,异常值消除会产生误导;

2. 数据点不独立时,剔除异常值会产生误导;

3. 所选加权因子不正确时,剔除异常值会产生误导;

异常值并非总是“坏”点

非线性回归通常可与实验数据一起使用,其中,X为变量(例如,时间或浓度)或在实验中调整的某些其他变量。由于所有分散都是由实验误差造成,而且我们几乎确定这由实验误差造成,所以,剔除所有极端异常值很有意义的。

在其他情况下,每个数据点均可表示不同的个体。在此情况下,异常值可能不是由实验错误造成,而是由生物变异引起的,或者是模型中未包含的其他变量的差异。此时,异常值的存在可能成为研究中最有意义的发现。尽管在此情况下,ROUT异常值方法标记异常值可能很重要,但是在未深入思考(或进行实验)就自动排除这些异常值的情况下,就是大错特错了。

在质量控制分析中,异常值可告诉你失控的过程。在未先了解该数值远离其他数值的原因时,不得删除异常值,异常值可能告诉你某些重要的信息。

Prism如何助你快速处理异常值?

在数据分析的过程中,我们需要首先识别异常值,然后判断异常值是否需要剔除。GraphPad Prism专为这一问题提供了专业解决方法 - 稳健回归和ROUT法,大家可以到GraphPad中国官网(http://www.graphpad-prism.cn)中的官方中文用户指南具体了解如何操作。

如果大家对Prism的使用有任何问题,欢迎私信我们哦!

精彩专栏:

GraphPad Prism 8​zhuanlan.zhihu.com
490698ec329ff35dd636ed6fa9294bed.png
GraphPad Prism 绘图教程​zhuanlan.zhihu.com
ef263457d5df6563548c0795465f926a.png

57cdcd2b8eed1366b01d3a3baa089e17.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值