matlab人工势场法三维演示图,机器人人工势场法路径规划

[attach]89465[/attach]

你用这组程序试试:

clear all;

%障碍和目标,起始位置都已知的路径规划,意图实现从起点可以规划出一条避开障碍到达目标的路径。

%初始化车的参数

Xo=[0 0];%起点位置

k=15;%计算引力需要的增益系数

K=0;%初始化

m=5;%计算斥力的增益系数,都是自己设定的。

Po=2.5;%障碍影响距离,当障碍和车的距离大于这个距离时,斥力为0,即不受该障碍的影响。也是自己设定。

n=7;%障碍个数

s=0.2;%障碍半径

a=0.5;

l=0.2;%步长

J=200;%循环迭代次数

%如果不能实现预期目标,可能也与初始的增益系数,Po设置的不合适有关。

%end

%给出障碍和目标信息

%Xsum=[10 10;1 1.2;3 2.5;4 4.5;3 6;6 2;5.5 5.5;8 8.5];%这个向量是(n+1)*2维,其中[10 10]是目标位置,剩下的都是障碍的位置。

Xsum=[5 4;0.5 1;1.5 1;2.0 1;2.5 1;3 1;3.5 1;4 1];

Xsum=[7 7;1 1;2 1;3 1;4 1;5 1;6 1;7 1];

Xj=Xo;%j=1循环初始,将车的起始坐标赋给Xj

%***************初始化结束,开始主体循环******************

for j=1:J%循环开始

Goal(j,1)=Xj(1);%Goal是保存车走过的每个点的坐标。刚开始先将起点放进该向量。

Goal(j,2)=Xj(2);

%调用计算角度模块

Theta=compute_angle(Xj,Xsum,n);%Theta是计算出来的车和障碍,和目标之间的与X轴之间的夹角,统一规定角度为逆时针方向,用这个模块可以计算出来。

%调用计算引力模块

Angle=Theta(1);%Theta(1)是车和目标之间的角度,目标对车是引力。

angle_at=Theta(1);%为了后续计算斥力在引力方向的分量赋值给angle_at

[Fatx,Faty]=compute_Attract(Xj,Xsum,k,Angle,0,Po,n);%计算出目标对车的引力在x,y方向的两个分量值。

for i=1:n

angle_re(i)=Theta(i+1);%计算斥力用的角度,是个向量,因为有n个障碍,就有n个角度。

end

%调用计算斥力模块

[Frerxx,Freryy,Fataxx,Fatayy]=compute_repulsion(Xj,Xsum,m,angle_at,angle_re,n,Po,a);%计算出斥力在x,y方向的分量数组。

%计算合力和方向,这有问题,应该是数,每个j循环的时候合力的大小应该是一个唯一的数,不是数组。应该把斥力的所有分量相加,引力所有分量相加。

Fsumyj=Faty+Freryy+Fatayy;%y方向的合力

Fsumxj=Fatx+Frerxx+Fataxx;%x方向的合力

Position_angle(j)=atan(Fsumyj/Fsumxj);%合力与x轴方向的夹角向量

%计算车的下一步位置

%    Xnext(1)=Xj(1)+l*cos(Position_angle(j));

%    Xnext(2)=Xj(2)+l*sin(Position_angle(j));

RF=sqrt(Fsumyj^2+Fsumxj^2);

Xnext(1)=Xj(1)+l*Fsumxj/RF;

Xnext(2)=Xj(2)+l*Fsumyj/RF;

%保存车的每一个位置在向量中

Xj=Xnext;

%判断

if (abs(Xj(1)-Xsum(1,1))<0.1)&(abs(Xj(2)-Xsum(1,2))<0.1)%是应该完全相等的时候算作到达,还是只是接近就可以?现在按完全相等的时候编程。

K=j%记录迭代到多少次,到达目标。

break;

%记录此时的j值

end%如果不符合if的条件,重新返回循环,继续执行。

end%大循环结束

K=j;

Goal(K,1)=Xsum(1,1);%把路径向量的最后一个点赋值为目标

Goal(K,2)=Xsum(1,2);

%***********************************画出障碍,起点,目标,路径点*************************

%画出路径

X=Goal(:,1);

Y=Goal(:,2);

%路径向量Goal是二维数组,X,Y分别是数组的x,y元素的集合,是两个一维数组。

%x=[1 3 4 3 6 5.5 8];%障碍的x坐标

%y=[1.2 2.5 4.5 6 2 5.5 8.5];

%x=[0.5 1 1.5 2 2.5 3 3.5 4];%障碍的x坐标

x=[1 2 3 4 5 6 7];%障碍的x坐标

y=[1 1 1 1 1 1 1];

plot(x,y,'o',Xsum(1,1),Xsum(1,2),'v',0,0,'ms',X,Y,'.r');

function Y=compute_angle(X,Xsum,n)%Y是引力,斥力与x轴的角度向量,X是起点坐标,Xsum是目标和障碍的坐标向量,是(n+1)*2矩阵

for i=1:n+1%n是障碍数目

deltaX(i)=Xsum(i,1)-X(1);

deltaY(i)=Xsum(i,2)-X(2);

r(i)=sqrt(deltaX(i)^2+deltaY(i)^2);

theta=sign(deltaY(i))*acos(deltaX(i)/r(i));

Y(i)=theta;   %angle;%保存每个角度在Y向量里面,第一个元素是与目标的角度,后面都是与障碍的角度

end

function [Yatx,Yaty]=compute_Attract(X,Xsum,k,angle,b,Po,n)%输入参数为当前坐标,目标坐标,增益常数,分量和力的角度

%把路径上的临时点作为每个时刻的Xgoal

R=(X(1)-Xsum(1,1))^2+(X(2)-Xsum(1,2))^2;%路径点和目标的距离平方

r=sqrt(R);%路径点和目标的距离

Yatx=k*r*cos(angle);%angle=Y(1).引力随距离减少而减弱

Yaty=k*r*sin(angle);

%

%斥力计算

function [Yrerxx,Yreryy,Yataxx,Yatayy]=compute_repulsion(X,Xsum,m,angle_at,angle_re,n,Po,a)%输入参数为当前坐标,Xsum是目标和障碍的坐标向量,增益常数,障碍,目标方向的角度

Rat=(X(1)-Xsum(1,1))^2+(X(2)-Xsum(1,2))^2;%路径点和目标的距离平方

rat=sqrt(Rat);%路径点和目标的距离

for i=1:n

Rrei(i)=(X(1)-Xsum(i+1,1))^2+(X(2)-Xsum(i+1,2))^2;%路径点和障碍的距离平方

rre(i)=sqrt(Rrei(i));%路径点和障碍的距离保存在数组rrei中

R0=(Xsum(1,1)-Xsum(i+1,1))^2+(Xsum(1,2)-Xsum(i+1,2))^2; %障碍和目标间的距离

r0=sqrt(R0);

if rre(i)>Po%如果每个障碍和路径的距离大于障碍影响距离,斥力令为0

Yrerx(i)=0;

Yrery(i)=0;

Yatax(i)=0;

Yatay(i)=0;

else

%if r0

if rre(i)

Yrer(i)=m*(1/rre(i)-1/Po)*(1/Rrei(i))*(rat^a);%分解的Fre1向量

Yata(i)=a*m*((1/rre(i)-1/Po)^2)*(rat^(1-a))/2;%分解的Fre2向量       Yata(i)=0;

Yrerx(i)=Yrer(i)*cos(angle_re(i)+pi);%angle_re(i)=Y(i+1)

Yrery(i)=Yrer(i)*sin(angle_re(i)+pi);

Yatax(i)=Yata(i)*cos(angle_at);%angle_at=Y(1)

Yatay(i)=Yata(i)*sin(angle_at);

else

Yrer(i)=m*(1/rre(i)-1/Po)*1/Rrei(i)*Rat;%分解的Fre1向量

Yata(i)=m*((1/rre(i)-1/Po)^2)*rat;%分解的Fre2向量       Yata(i)=0;

Yrerx(i)=Yrer(i)*cos(angle_re(i)+pi);%angle_re(i)=Y(i+1)

Yrery(i)=Yrer(i)*sin(angle_re(i)+pi);

Yatax(i)=Yata(i)*cos(angle_at);%angle_at=Y(1)

Yatay(i)=Yata(i)*sin(angle_at);

end

end%判断距离是否在障碍影响范围内

end

Yrerxx=sum(Yrerx);%叠加斥力的分量

Yreryy=sum(Yrery);

Yataxx=sum(Yatax);

Yatayy=sum(Yatay);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值