在之前的文章中我们提到过,含参数的二次函数是中考压轴题的高频考点,往往是学生分数拉开差距的题型。
它不仅能考查学生对函数综合知识的掌握程度和灵活运用能力,而且还对分类讨论和数形结合两种数学思想方法有着较高的要求。
这类试题虽然知识和方法为学生所熟悉,似乎并不难解,但往往头绪纷繁,且计算量大,出错率较高。
一般来说,含参二次函数主要考查的是二次函数的图象和相关的性质,常考的题型有以下五种:
1判断含参二次函数的大致图象;
2求含参二次函数与x轴的交点问题;
3求含参二次函数的表达式;
4含参二次函数的对称性、顶点和最值问题;
5与含参二次函数相关的范围问题。
在之前的文章中,我们已经对第1-4类题型进行了方法的归纳与总结(参看往期文章《中考压轴题专题|含参数的二次函数解题攻略》与《中考压轴题专题|含参二次函数这样解,一点也不难!》),今天我们将继续讲解第5类题型。
因全省统一中考的大趋势,笔者就以浙江杭州为例,分析了2016-2019年的杭州中考大数据,与含参二次函数相关的范围问题,即第5类题型考查的具体情况如下表:

从表格中可以看到,杭州市近4年中考中,与含参二次函数相关的范围问题是每年的必考点,且始终位于解答题倒数第2题位置进行考查,其重要性不言而喻。
接下来我们就对第5类题型,也是在解答题压轴题中出现频率最高、难度也相对较高的题型,进行解题技巧的详细分析和方法的归纳。
一、真题分析
【例1】(2019·湖州)已知抛物线y=2x²-4x+c与x轴有两个不同的交点.
(2)若抛物线y=2x²-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.
解题思路
求出抛物线对称轴为直线x=1,根据点A(2,m)和点B(3,n)与对称轴的位置关系,再由函数的增减性即可求解.
解题步骤
解:∵x=-b/2a=-(-4)/2×2=1
∴抛物线y=2x²-4x+c的对称轴为直线x=1,
∴A(2,m)和点B(3,n)都在对称轴的右侧,
∵2>0,抛物线开口向上,
∴当x≥1时,y随x的增大而增大,
∴m
【例2】(2019·嘉兴舟山)小飞研究二次函数y=-(x-m)²-m+1(m为常数)性质时得到如下结论:
①这个函数图象的顶点始终在直线y=-x+1上;
②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;
③点A(x₁,y₁)与点B(x₂,y₂)在函数图象上,若x₁2m,则y₁
④当-1
其中错误结论的序号是( )
A.① B.②
C.③ D.④
解题思路
本题中考查与含参二次函数相关的范围问题的为结论③和④,故以下只分析这两个结论:
③把点A(x₁,y₁)与点B(x₂,y₂)代入已知的含参二次函数顶点式中,再计算y₁-y₂,然后进行因式分解,可以分离出和已知有关的x₁+x₂因式,再根据已知的范围,可以确定y₁-y₂与0的大小,进而比较出y₁和y₂的大小;
④根据已知的含参二次函数顶点式,可以确定该抛物线的开口方向和对称轴,然后按照要求,把符合要求的那一段图象做好标记,由这一段图象和对称轴的位置关系,列出不等式即可求出m的取值范围.
解题步骤
二次函数y=-(x-m)²-m+1(m为常数)
③由已知得y₁=-(x₁-m)²-m+1,y₂=-(x₂-m)²-m+1,
∴y₁-y₂=-(x₁-m)²-m+1-[-(x₂-m)²-m+1]
=(x₂-m)²-(x₁-m)²
=[(x₂-m)+(x₁-m)][(x₂-m)-(x₁-m)]
=(x₁+x₂-2m)(x₂-x₁)
又∵x₁2m
∴x₁+x₂-2m>0,x₂-x₁>0,
∴y₁-y₂>0,即y₁>y₂
故结论③错误;
④∵二次函数y=-(x-m)²-m+1(m为常数)的对称轴为直线x=m
且a=-1<0
∴抛物线开口向下,当x≤m时,y随x的增大而增大,
已知当-1
∴当-1
故m的取值范围为m≥2.
故结论④正确.
故选:C.
【例3】(2019·杭州)设二次函数y=(x-x₁)(x-x₂)(x₁,x₂是实数).
(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0
解题思路
将已知(0,m)和(1,n)两点代入函数y=(x-x₁)(x-x₂)求出m,n的值,再表示出mn,易得mn是关于x₁和x₂的代数式,再将此代数式中的两个变量x₁和x₂进行分离,变形,结合已知0
解题步骤
解:
二次函数的图象经过(0,m)和(1,n)两点,
∴m=x₁x₂,n=1-x₁-x₂+x₁x₂,
∴mn=x₁x₂(1-x₁)(1-x₂)
=(x₁-x₁²)(x₂-x₂²)
=[-(x₁-1/2)²+1/4][-(x₂-1/2)²+1/4]
∵0
∴0
∵m与n不能同时取到1/4,
∴0
【例4】(2018·杭州)设二次函数y=ax²+bx-(a+b)(a,b是常数,a≠0).
(3)若a+b<0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.
解题思路
把x=2代入解析式,用ab表示m,由m的范围结合a+b>0可求a的取值范围.
解题步骤
解:当x=2时
m=4a+2b-(a+b)=3a+b>0①
∵a+b<0
∴-a-b>0②
①②相加得:
2a>0
∴a>0.
【例5】(2017·杭州)在平面直角坐标系中,设二次函数y₁=(x+a)(x-a-1),其中a≠0.
(3)已知点P(x₀,m)和Q(1,n)在函数y₁的图象上,若m
解题思路
根据解析式,画出二次函数的大致图象,明确其增减性,根据图象可得答案.
解题步骤
解:y₁的对称轴为:直线x=(x₁+x₂)/2=(-a+a+1)/2=1/2,
当P在对称轴的左侧(含顶点)时,y随x的增大而减小,
∵(1,n)与(0,n)关于对称轴对称,
由m
当P在对称轴的右侧时,y随x的增大而增大,
由m
综上所述:m
【例6】(2016·杭州)已知函数y₁=ax²+bx,y₂=ax+b(ab≠0).在同一平面直角坐标系中.
(2)若函数y₂的图象经过y₁的顶点.
①求证:2a+b=0;
②当1
解题思路
①将函数y₁的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y₂的解析式中,即可得出a、b的关系,再根据ab≠0,整理变形后即可得出结论;
②由①中的结论,用a表示出b,再将两个含参函数的解析式作差,即可得出y₁-y₂=a(x-2)(x-1),根据x的取值范围可得出(x-2)(x-1)<0,分a>0或a<0两种情况考虑,即可得出结论.
解题步骤
①证明:∵y₁=ax²+bx=a(x+b/2a)²-b²/4a,
∴函数y₁的顶点为(-b/2a,-b²/4a),
∵函数y₂的图象经过y₁的顶点,
∴-b²/4a=a(-b/2a)+b,即b=-b²/2a,
∵ab≠0,
∴-b=2a,
∴2a+b=0.
②解:∵b=-2a,
∴y₁=ax²-2ax=ax(x-2),y₂=ax-2a= a(x-2),
∴y₁-y₂=a(x-2)(x-1).
∵1
∴x-2<0,x-1>0,(x-2)(x-1)<0.
当a>0时,a(x-2)(x-1)<0,y₁
当a<0时,a(x-2)(x-1)>0,y₁>y₂.
二、方法归纳
根据以上6个考查与含参二次函数相关的范围问题的中考真题,我们可以将此类问题分为三大类:01求参数的范围或自变量的范围
通常情况下,此类问题中的抛物线开口方向确定,对称轴直线方程中含1个参数或最后可以化为1个参数。
此时只需画出抛物线的大致图象,标出和参数有关的对称轴,再根据题意把符合条件的图象做好标记,很容易根据符合题意的图象列出与之有关的不等式,最后求出参数的范围或直接写出自变量的范围。
02求函数值的乘积范围
对于此类问题,首先将所求函数值的乘积表示成和参数有关的代数式(即把点的坐标代入对应的函数解析式);
如果乘积中只含有1个参数,结合已知条件或已经求出的参数范围,求出该代数式的范围即可;
如果乘积中含有2个变量,则需分离变量,把代数式化成两个变量分开的式子,分别求出对应的范围, 即可求出整个代数式的范围。
03比较函数值的大小
此类问题不管是同一个函数图象上的不同点比较函数值大小,还是不同函数图象上已知自变量范围比较函数值大小,如果根据题意可以确定符合题目要求的图象,则可直接画图象确定函数值的大小;如果不能确定图象,则可采取函数值作差比较法。
使用图象法确定函数值大小相对较简单,此处不作详细介绍。下面对作差比较法的详细步骤进行说明:
a把需要比较函数值大小的点的坐标代入对应的函数解析式,可以将函数值表示成与参数有关的代数式;
b将这两个表示成参数的函数值作差,得到一个和参数有关的多项式,然后进行因式分解;
c因式分解后一般都会出现和已知有关的因式,根据已知的关系式判断出该结果和0的大小 (大多数情况抛物线的开口方向需要分a>0或a<0两种情况讨论),最后得出函数值的大小关系。
从以上方法归纳中,我们不难发现:对于与含参二次函数相关的范围问题,不管是哪类问题,都需要熟练掌握参数与二次函数的对称性和增减性之间的关系,会进行和参数有关的字母运算,尤其作差之后如何进行因式分解,进而产生和已知有关的因式。
最后附上二次函数对称性和增减性之间关系的表格,供大家复习与参考。(注:当a<0时,对称轴不变,增减性与a>0时相反。)

来源:创课教研院
文稿/黄小英
编辑/任雨晨