抛物线中四边形面积最大值_中考二次函数压轴题的三类面积问题及其求解秘籍...

本文介绍了中考二次函数大题中的三类面积问题:最值问题、定值问题和等值问题。通过具体例题解析了如何求解抛物线中相关图形的最大面积,包括如何构造平行切线找到最大面积,以及通过等积变形解决问题。此外,还总结了解题策略,如最值问题使用铅垂法,定值和等值问题采用构造等积变形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二次函数压轴题涉及的知识点多,综合性强,难度比较大,往往成为同学们心中的“痛”,怎样解决这类压轴题,轻松备考2020年中考呢?下面介绍三类二次函数大题中常见的面积问题:最值问题、定值问题、等值问题,常用处理方法,期待对你中考数学复习有实实在在的帮助。

b9896bd44cde285b2c33cdb772ed358d.png

1.最值问题

如图,抛物线y=-x²+2x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接BC,抛物线在线段BC上方部分取一点P,连接PB、PC,使得△PBC面积最大,求面积最大值及此时P点坐标.

51c1204f0bcbd13e95b8919a8ab43a65.png

【解析】除了上文介绍的铅垂法外,将再介绍一种思路:

构造平行切线:以BC为底边,过点P向BC作垂线PH交BC于H点,求△PBC面积最大,在底边BC确定不变的前提下,PH最大即可.

2676b244fe0ed2a1503bab44e7c503d5.png

过点P作PQ∥BC,当PQ与抛物线相切时,PQ与BC距离最大,即PH最大.

如何求解P点坐标?

(1)求BC解析式:y=-x+3;

(2)根据PQ∥BC,可设PQ解析式:y=-x+m;

(3)根据相切,联立方程:-x²+2x+3=-x+m,根的判别式为0,可求m的值

(4)根据P点坐标,即可求得△PBC面积的最大值.

166619cd6e47152542455f72c420a2e6.png

但其实即便算出了P点坐标,求△PBC面积也还是要费点事。

问题衍生

如图,抛物线y=-x²+2x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接BC,抛物线在线段BC上方部分取一点P,连接PB、PC.

(1)垂线段最值:过点P作PH⊥CB交CB于H点,求PH最大值及此时P点坐标.

b8ae43d90b6bbbde56b2a963f9530590.png

思路1:所谓PH最大,即△PBC面积最大,可用铅垂法求得△PBC面积最大值,再除以BC即可得PH最大值.

思路2:过P点作PQ⊥x轴交BC于Q点,则△PHQ∽△BOC,PH:BO=PQ:BC,

c9bc1af0323e99679ee8eb1771748b7b.png

(2)相关三角形最值:过点P作PH⊥BC交BC于H点,作PQ⊥x轴交BC于Q点,求△PHQ周长最大值及面积最大值.

7789e9575088fcc98f470e49e1a50d16.png

思路:把握住△PHQ∽△BOC,不管是求周长最大还是面积最大,都可转化为PQ最大值.

0bacd09ea57264b6141dd3c294414d20.png

周长、面积均可求.

应用举例

1(2019聊城中考题,有删减)如图,在平面直角坐标系中,抛物线y=ax²+bx+c与x轴交于点A(-2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.

(1)求抛物线的表达式;

(2)作PF⊥BC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值