二次函数压轴题涉及的知识点多,综合性强,难度比较大,往往成为同学们心中的“痛”,怎样解决这类压轴题,轻松备考2020年中考呢?下面介绍三类二次函数大题中常见的面积问题:最值问题、定值问题、等值问题,常用处理方法,期待对你中考数学复习有实实在在的帮助。

1.最值问题
如图,抛物线y=-x²+2x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接BC,抛物线在线段BC上方部分取一点P,连接PB、PC,使得△PBC面积最大,求面积最大值及此时P点坐标.

【解析】除了上文介绍的铅垂法外,将再介绍一种思路:
构造平行切线:以BC为底边,过点P向BC作垂线PH交BC于H点,求△PBC面积最大,在底边BC确定不变的前提下,PH最大即可.

过点P作PQ∥BC,当PQ与抛物线相切时,PQ与BC距离最大,即PH最大.
如何求解P点坐标?
(1)求BC解析式:y=-x+3;
(2)根据PQ∥BC,可设PQ解析式:y=-x+m;
(3)根据相切,联立方程:-x²+2x+3=-x+m,根的判别式为0,可求m的值
(4)根据P点坐标,即可求得△PBC面积的最大值.

但其实即便算出了P点坐标,求△PBC面积也还是要费点事。
问题衍生
如图,抛物线y=-x²+2x+3与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,连接BC,抛物线在线段BC上方部分取一点P,连接PB、PC.
(1)垂线段最值:过点P作PH⊥CB交CB于H点,求PH最大值及此时P点坐标.

思路1:所谓PH最大,即△PBC面积最大,可用铅垂法求得△PBC面积最大值,再除以BC即可得PH最大值.
思路2:过P点作PQ⊥x轴交BC于Q点,则△PHQ∽△BOC,PH:BO=PQ:BC,

(2)相关三角形最值:过点P作PH⊥BC交BC于H点,作PQ⊥x轴交BC于Q点,求△PHQ周长最大值及面积最大值.

思路:把握住△PHQ∽△BOC,不管是求周长最大还是面积最大,都可转化为PQ最大值.

周长、面积均可求.
应用举例
1(2019聊城中考题,有删减)如图,在平面直角坐标系中,抛物线y=ax²+bx+c与x轴交于点A(-2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.
(1)求抛物线的表达式;
(2)作PF⊥BC