最小二乘插值 matlab,【数学建模算法】(27)插值和拟合:最小二乘法

1.线性最小二乘法

曲线拟合问题的提法是,已知一组(二维)数据,即平面上的

math?formula=n个点

math?formula=%5Cleft(x_%7Bi%7D%2C%20y_%7Bi%7D%5Cright)

math?formula=i%3D1%2C2%2C%20%5Ccdots%2C%20n

math?formula=x_%7Bi%7D互不相同,寻求一个函数(曲线)

math?formula=y%3Df(x)使

math?formula=f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。

线性最小二乘法是解决曲线拟合最常用的方法,基本思路是,令:

math?formula=f(x)%3Da_%7B1%7D%20r_%7B1%7D(x)%2Ba_%7B2%7D%20r_%7B2%7D(x)%2B%5Ccdots%2Ba_%7Bm%7D%20r_%7Bm%7D(x)

其中

math?formula=r_%7Bk%7D(x)是事先选定的一组线性无关的函数,

math?formula=a_%7Bk%7D是待定系数

math?formula=(k%3D1%2C2%2C%20%5Ccdots%2C%20m%2C%20m%3Cn)。拟合准则是使

math?formula=y_%7Bi%7D%2C%20i%3D1%2C2%2C%20%5Ccdots%2C%20n,与

math?formula=f%5Cleft(x_%7Bi%7D%5Cright)的距离

math?formula=%5Cdelta_%7Bi%7D 的平方和最小,称为最小二乘准则。

1.1.系数

math?formula=a_%7Bk%7D的确定

记:

math?formula=J%5Cleft(a_%7B1%7D%2C%20%5Ccdots%2C%20a_%7Bm%7D%5Cright)%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20%5Cdelta_%7Bi%7D%5E%7B2%7D%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%5Cleft%5Bf%5Cleft(x_%7Bi%7D%5Cright)-y_%7Bi%7D%5Cright%5D%5E%7B2%7D

为求

math?formula=a_%7B1%7D%2C%20%5Ccdots%2C%20a_%7Bm%7D使

math?formula=J达到最小,只需利用极值的必要条件

math?formula=%5Cfrac%7B%5Cpartial%20J%7D%7B%5Cpartial%20a_%7Bk%7D%7D%3D0(k%3D1%2C%20%5Ccdots%2C%20m),得到关于

math?formula=a_%7B1%7D%2C%20%5Ccdots%2C%20a_%7Bm%7D的线性方程组:

math?formula=%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20r_%7Bj%7D%5Cleft(x_%7Bi%7D%5Cright)%5Cleft%5B%5Csum_%7Bk%3D1%7D%5E%7Bm%7D%20a_%7Bk%7D%20r_%7Bk%7D%5Cleft(x_%7Bi%7D%5Cright)-y_%7Bi%7D%5Cright%5D%3D0%2C%20%5Cquad(j%3D1%2C%20%5Ccdots%2C%20m)%EF%BC%881%EF%BC%89

即:

math?formula=%5Csum_%7Bk%3D1%7D%5E%7Bm%7D%20a_%7Bk%7D%5Cleft%5B%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20r_%7Bj%7D%5Cleft(x_%7Bi%7D%5Cright)%20r_%7Bk%7D%5Cleft(x_%7Bi%7D%5Cright)%5Cright%5D%3D%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20r_%7Bj%7D%5Cleft(x_%7Bi%7D%5Cright)%20y_%7Bi%7D%2C%20%5Cquad(j%3D1%2C%20%5Ccdots%2C%20m)%EF%BC%882%EF%BC%89

记:

math?formula=R%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7Br_%7B1%7D%5Cleft(x_%7B1%7D%5Cright)%7D%20%26%20%7B%5Ccdots%7D%20%26%20%7Br_%7Bm%7D%5Cleft(x_%7B1%7D%5Cright)%7D%20%5C%5C%20%7B%5Cvdots%7D%20%26%20%7B%5Cvdots%7D%20%26%20%7B%5Cvdots%7D%20%5C%5C%20%7Br_%7B1%7D%5Cleft(x_%7Bn%7D%5Cright)%7D%20%26%20%7B%5Ccdots%7D%20%26%20%7Br_%7Bm%7D%5Cleft(x_%7Bn%7D%5Cright)%7D%5Cend%7Barray%7D%5Cright%5D_%7Bn%20%5Ctimes%20m%7D

math?formula=A%3D%5Cleft%5Ba_%7B1%7D%2C%20%5Ccdots%2C%20a_%7Bm%7D%5Cright%5D%5E%7BT%7D%2C%20%5Cquad%20Y%3D%5Cleft(y_%7B1%7D%2C%20%5Ccdots%2C%20y_%7Bn%7D%5Cright)%5E%7BT%7D

方程组(2)可表为:

math?formula=R%5E%7BT%7D%20R%20A%3DR%5E%7BT%7D%20Y%EF%BC%883%EF%BC%89

math?formula=%5Cleft%5C%7Br_%7B1%7D(x)%2C%20%5Ccdots%2C%20r_%7Bm%7D(x)%5Cright%5C%7D线性无关时,

math?formula=R列满秩,

math?formula=R%5E%7BT%7D%20R可逆,于是方程组(3)有唯一解:

math?formula=A%3D%5Cleft(R%5E%7BT%7D%20R%5Cright)%5E%7B-1%7D%20R%5E%7BT%7D%20Y

1.2.函数

math?formula=r_%7Bk%7D(x)的选取

面对一组数据

math?formula=%5Cleft(x_%7Bi%7D%2C%20y_%7Bi%7D%5Cright)%2C%20i%3D1%2C2%2C%20%5Ccdots%2C%20n,用线性最小二乘法作曲线拟合时,首要的、也是关键的一步是恰当地选取

math?formula=r_%7B1%7D(x)%2C%20%5Ccdots%2C%20r_%7Bm%7D(x)容易确定。若无法知道

math?formula=y

math?formula=x之间的关系,通常可以将数据

math?formula=%5Cleft(x_%7Bi%7D%2C%20y_%7Bi%7D%5Cright)%2C%20i%3D1%2C2%2C%20%5Ccdots%2C%20n作图,直观地判断应该用什么样的曲线去作拟合。人们常用的曲线有:

(1)直线:

math?formula=y%3Da_%7B1%7D%20x%2Ba_%7B2%7D

(2)多项式:

math?formula=y%3Da_%7B1%7D%20x%5E%7Bm%7D%2B%5Ccdots%2Ba_%7Bm%7D%20x%2Ba_%7Bm%2B1%7D(一般

math?formula=m%3D2%2C3,不宜太高)

(3)双曲线(一支):

math?formula=y%3D%5Cfrac%7Ba_%7B1%7D%7D%7Bx%7D%2Ba_%7B2%7D

(4)指数函数:

math?formula=y%3Da_%7B1%7D%20e%5E%7Ba_%7B2%7D%20x%7D

对于指数曲线,拟合前需作变量代换,化为对

math?formula=a_%7B1%7D%2C%20a_%7B2%7D的线性函数。

已知一组数据,用什么样的曲线拟合最好,可以在直观判断的基础上,选几种曲线分别拟合,然后比较,看哪条曲线的最小二乘指标

math?formula=J最小。

2.最小二乘法的Matlab实现

2.1.解方程组方法

在上面的记号下,

math?formula=J%5Cleft(a_%7B1%7D%2C%20%5Ccdots%2C%20a_%7Bm%7D%5Cright)%3D%5C%7CR%20A-Y%5C%7C%5E%7B2%7D

Matlab中的线性最小二乘的标准型为:

math?formula=%5Cmin%20_%7BA%7D%5C%7CR%20A-Y%5C%7C_%7B2%7D%5E%7B2%7D

命令为:

math?formula=A%3DR%20%5Cbackslash%20Y

例1 用最小二乘法求一个形如

math?formula=y%3Da%2Bb%20x%5E%7B2%7D的经验公式,使它与下表所示的数据拟合。

math?formula=x

19

25

31

38

44

math?formula=y

19.0

32.3

49.0

73.3

97.8

解:编写程序如下

x=[19 25 31 38 44]';

y=[19.0 32.3 49.0 73.3 97.8]';

r=[ones(5,1),x.^2];

ab=r\y%求出最小二乘的系数

x0=19:0.1:44;

y0=ab(1)+ab(2)*x0.^2;

plot(x,y,'o',x0,y0,'r')

这里没有用任何函数,笔者也是第一次知道反斜杠可以直接算出最小二乘算法的系数。

2.2.多项式拟合方法

如果取

math?formula=%5Cleft%5C%7Br_%7B1%7D(x)%2C%20%5Ccdots%2C%20r_%7Bm%2B1%7D(x)%5Cright%5C%7D%3D%5Cleft%5C%7B1%2C%20x%2C%20%5Ccdots%2C%20x%5E%7Bm%7D%5Cright%5C%7D,即用

math?formula=m次多项式拟合给定数据,Matlab中有现成的函数:

a=polyfit(x0,y0,m)

其中输入参数

math?formula=x0%2Cy0为要拟合的数据,

math?formula=m为拟合多项式的次数,输出参数

math?formula=a为拟合多项式

math?formula=y%3Da_%7Bm%7D%20x%5E%7Bm%7D%2B%5Ccdots%2Ba_%7B1%7D%20x%2Ba_%7B0%7D的系数

math?formula=%5Cmathrm%7Ba%7D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bllll%7D%7B%5Cmathrm%7Ba%7D_%7B%5Cmathrm%7Bm%7D%7D%2C%7D%20%26%20%7B%5Ccdots%2C%7D%20%26%20%7B%5Cmathrm%7Ba%7D_%7B1%7D%2C%7D%20%26%20%7B%5Cmathrm%7Ba%7D_%7B0%7D%7D%5Cend%7Barray%7D%5Cright%5D

例2 某乡镇企业 1990-1996 年的生产利润如下表

年份

1990

1991

1992

1993

1994

1995

1996

利润(万元)

70

122

144

152

174

196

202

试预测1997年和1998年的利润:

解:做已知数据的散点图:

x0=[1990 1991 1992 1993 1994 1995 1996];

y0=[70 122 144 152 174 196 202];

plot(x0,y0,'*')

发现该乡镇企业的年生产利润几乎直线上升。因此,我们可以用

math?formula=y%3Da_%7B1%7D%20x%2Ba_%7B0%7D作为拟合函数来预测该乡镇企业未来的年利润。编写程序如下:

x0=[1990 1991 1992 1993 1994 1995 1996];

y0=[70 122 144 152 174 196 202];

a=polyfit(x0,y0,1)

y97=polyval(a,1997)

y98=polyval(a,1998)

求得

math?formula=a_%7B1%7D%3D20%2C%20%5Cquad%20a_%7B0%7D%3D-4.0705%20%5Ctimes%2010%5E%7B4%7D,预测1997年的利润为233.4286万元,1998年的生产利润是253.9286元。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值