自动跟随小车c语言,基于OpenCV的智能小车运动轨迹跟踪方法研究

摘要:

随着人工智能技术的快速发展,智能小车开发受到越来越多研究者的关注,也已经成为一个重要的研究方向,而解决智能小车在路径规划中行驶的运动故障重要手段是对其进行的视频监控,但是智能小车的视频监控只能看到智能小车的行进状况而不进行相对应的处理,所以对智能小车的运动轨迹跟踪是需要解决的主要问题.智能小车运动轨迹跟踪研究的核心技术主要包括对其进行运动目标检测和跟踪等方面.完成主要工作如下:(1)智能小车的运动目标检测:研究了智能小车目标运动检测中的二帧差分法,三帧差分法,高斯混合模型(GMM)背景差分法,ViBe背景差分法和光流法等目标运动检测算法,通过实验对比分析选取实时性较好,计算简单,准确率较高和背景更新较快的ViBe背景差分的方法,将智能小车目标与背景分隔开,提取到智能小车的前景目标,从原图中获取智能小车运动图像信息.(2)智能小车的目标跟踪:研究了Meanshift跟踪算法,Camshift跟踪算法和卡尔曼滤波和Camshift算法结合的跟踪算法,通过对原始图像进行直方图反向投影,得到的反向投影图进行Meanshift迭代,直到迭代计算得到最优搜索窗口的位置和大小,通过卡尔曼滤波对智能小车的质心和面积为匹配特征,缩小搜索范围,在视频序列中的每一帧运用Meanshift算法,并将上一帧的结果作为下一帧的初始值,有效的解决了遮挡带来的问题,验证了改进后的Camshift算法的有效性和鲁棒性.最后利用卡尔曼滤波结合Camshift算法改进后的ViBe运动检测算法实现了智能小车的全自动跟踪.(3)智能小车目标轨迹绘制:遍历每帧找到智能小车目标面积最大的轮廓,确定这个轮廓的外接圆,计算轮廓的距得到质心,只有当半径大于阈值的时候,开始画图,遍历追踪点分段画出轨迹,从而得到了智能小车中心质点的运动轨迹.本文利用Pycharm和OpenCV3.6.0视觉库搭建实验平台,建立了一个智能小车目标运动检测和跟踪系统,主要包括智能小车的运动目标检测模块,跟踪模块,轨迹生成模块.选取合适的目标运动检测算法,改进了智能小车的目标跟踪算法,能够准确的检测到智能小车并能进行全自动的跟踪,具有良好的应用前景.

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值