如何判断多项式有没有重根_如何判断在一点有没有导数?

55534a95344b7431f72d10359d8b9731.png

导数是高等数学中的重要概念,什么是导数?

导数是变化率,如何表示?

f1d43ea6f7cd4cc931cbbb16555e3e13.png

设有函数y=f(x),在x0点,自变量增量是△x,对应y的增量为△y,

则比率△y/△x 是y在△x上对x的变化率,而y在x0点的导数是

636b94915f52b6ae277215a86eef262d.png

注意△y/△x是平均变化率,而f(x)在x0点的导数是在x0点的变化率,得用极限表示。

下面是判断在一点是否可导的方法:

一、在一点可导首先要连续

所谓连续就是变化不间断,不能有间断点。

二、初等函数在连续点一般是可导的

只要不是分段的函数,并且不是间断点,一般可导。

比如下面的求导公式:

ba8032c1a09eb72e211d6690a6793e22.png

但在个别点的导数为无穷大,也可以说导数不存在,比如:

y=x^(1/3) 在x=0点就无导数,或者说导数无穷大,而y=x^3在0点导数为0

a932bfed0fb1b063dfd81197caa76189.png

三、在图像上看有无切线来判断(分段函数连结点)

还有一个非常直观的方法就是看函数图像,如果在一点能画出切线则可导,如果切线是垂直x轴则认为不存在。

这对于判断分断函数非常好用,比如在尖点处不可导。

b6aab18c18b7c2785a779c155cd5f838.png

y=|x| 存在尖点

acb6af18ac87bcc33b3ee574b7ad2c10.png

这个分段函数由y=-x与y=x^2组成,在连结点不存在切线。

101aa2eea50d034887f370f08baae79a.png

这个也是尖点,不存在切线。

四、分段函数连结点可导的判断依据

有时候只靠看还不行,眼见不一定真!

比如 y=x与y=x^2的组合

0271c94b49a02d3a7e3f845a0bacd812.png

在x=0处导数不存在,这个点是尖点,但下图却不同

d72d0bee040a96795e77f56176ea9510.png

由y=x与y=sinx组合而成的这个函数在0点却是可导的,不是尖点,也就是说直线与曲线相连的点不一点都是尖点,没有切线,那么判断依据是什么呢?

判断这点的左右层数是否存在且相等,也就是说判断这点两边的函数在这点的变化率是不是相等。

y=x与y=x^2在0点的变化率不同,一个为1,一个为0,所以在0点不可导,而y=x与y=sinx在0处的变化率则是相同的,从图中也大致可以看出。

怎么样?在一点是否可导会不会判断了呢!

1a06dd7a753072339b63ec99eea899fc.gif

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> <strong><span style="font-size:20px;color:#FF0000;">本课程主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者</span></strong> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">1. 包含:<span style="color:#FFFF00;background-color:#FF0000;">项目源码、</span><span style="color:#FFFF00;background-color:#FF0000;">项目文档、数据库脚本、软件工具</span>等所有资料</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">2. 手把手的带你从零开始部署运行本套系统</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">3. 该项目附带的源码资料可作为毕设使用</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">4. 提供技术答疑和远程协助指导</span></strong></span><strong><span style="font-size:18px;"></span></strong> </p> <p> <br /> </p> <p> <span style="font-size:18px;"><strong>项目运行截图:</strong></span> </p> <p> <strong><span style="font-size:18px;">1)系统登陆界面</span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015433522.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">2)学生模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015575966.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">3)教师模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016127898.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">4)系统管理员</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016281177.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016369884.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">更多Java毕设项目请关注我的毕设系列课程 <a href="https://edu.csdn.net/lecturer/2104">https://edu.csdn.net/lecturer/2104</a></span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p>
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页